
Introduction

1. Introduction

Q.4.5.1.1 What is automata theory?
Answer: Automata theory is a theoretical branch of computer science.
The word automata is plural form of automaton. The word ”automaton”
is closely related to the word ”automation”, denotes automatic processes
carrying out the production of an item. Automata theory deals with the
logic of computation with respect to simple machines, referred to as au-
tomata. In automata theory, computer scientists are able to understand
how machines compute functions and solve problems. Here we answer
the questions like
i) what it means for a function to be defined as computable?
ii) what it means for a question to be described as decidable?
Automatons are abstract models of machines that perform computations
on an input by moving through a series of states or configurations. At
each state of the computation, a transition function determines the next
configuration on the basis of a finite portion of the present configuration.
As a result, once the computation reaches to an accepting configuration,
it accepts that input. The most general and powerful automata is the
Turing machine.
The major objective of automata theory is to develop methods by which
computer scientists can describe and analyze the dynamic behavior of
discrete systems, in which signals are sampled periodically. The behav-
ior of these discrete systems is determined by the way that the system
is constructed from storage and combinational elements. Characteristics
of an automata include the following.
Inputs: Sequences of symbols selected from a finite set
I = {x1, x2, x3, . . . , xm}, where m is the number of inputs.
Outputs: Sequences of symbols selected from a finite set
O = {y1, y2, y3, . . . , yn}, where n is the number of outputs.
States: Finite set Q. The definition of Q depends on the type of au-
tomaton.
There are four major types of automaton : finite-state machine, push-
down automata, linear-bounded automata and Turing machine.
These families of automata are shown in Fig. 1.1 as a hierarchal form,
where the finite-state machine is the simplest automata and the Turing
machine is the most complex one.

1

Introduction

Figure 1.1: Chomsky hierarchy of automata

Q.4.5.1.2 What is computability theory?
Answer: It deals with the computer algorithm of a problem. There are
many problems which do not possess any algorithm to solve them. For
example, the problem of determining the truth value of mathematical
statement. So, the objective of the computability theory is to classify
problems by those that are solvable and those that are not.

Q.4.5.1.3 What are the objectives of complexity theory? Mention an
area, where complexity theory plays an important role.
Answer: The objectives of complexity theory is to classify the problems
as easy ones and hard ones. But the central idea of complexity theory is
what makes a problem computationally hard and the other easy.
Generally, we prefer an easy solution of a hard problem. Cryptography
is exceptional to that. Here we prefer a hard computational problem
than an easy one. We try to protect valuable information by providing
secret codes that are hard to break.

Q.4.5.1.4 What is multi-set? How does it differ from set?
Answer: A multi-set is a set that allows more than one occurrence of
an element. For example, {1, 1, 1} and {1, 1} and {1} are different
multi-sets, but they are identical sets.

Q.4.5.1.5 What is the difference between a sequence and a tuple?
Answer: A sequence is an ordered list of objects. For example, {4, 8, 12}

2

Introduction

is a sequence. A finite sequence is a tuple. A sequence with m elements
is an m-tuple.

Q.4.5.1.6 Find the error in the following proof.
Prove that 2 = 1 (?)
Answer: Consider the equation a = b. (1.1)
Multiplying both-sides of (1.1) by a, we get
a2 = ab
or, a2 − b2 = ab− b2
or, (a+ b)(a− b) = b(a− b) (1.2)
or, a+ b = b (1.3)
Let a = 1 and b = 1.
From (1.3) we get, 2 = 1.
Answer: The mistake in the above proof is that we cannot divide both
side of (1.2) by a− b, since a and b are the same as assumed in (1.1).

Q.4.5.1.7 Prove that (xy)R = yRxR for any string over alphabet Σ,
where zR is the reverse of string z.
Answer: We shall prove it by induction on length of string y (i.e., |y |)
For |y| = 0, y = 4 (empty string).
In this case (xy)R = (x4)R = xR = 4xR = 4RxR = yRxR

So, the result is true for |y| = 0. Assume that the result is true for
|y| ≤ n. So, (xy)R = yRxR for |y| ≤ n.
Now, consider string y such that |y| = n+ 1. Without loss of generality
y = wa, for some w ∈ Σ∗ and a ∈ Σ, where |w| = n.
Now, (xy)R = (x(wa))R = ((xw)a)R = a(xw)R [by definition of reversal]
= awRxR [by induction hypothesis as |w| ≤ n]
= (wa)RxR [by definition of reversal]
= yRxR

Q.4.5.1.8 Prove that, if |A| > |B| then there is no one-to-one function
from A to B.
Answer: We shall prove it by induction on the number of elements in B.
Let |B | = 1 and b ∈ B. Then |A| > 1 (given condition). Then, there
exists at least two elements, a1, a2 ∈ A and f(a1) = b, f(a2) = b. So,
f : x→ y is not one-to-one.
Let |B | ≤ n and |A | > |B |. Assume that f : x→ y is not one-to-one.
Now, let |B | = n+ 1 and |A | > |B | (1.4)
We have to show that f : x→ y is not one-to-one.
Let b be an arbitrary element in B. It is associated with more than one

3

Finite Automata

2. Finite Automata

Q.4.5.2.1 State some features of finite automata.
Answer: Some important features of a finite automaton (FA) are given
below.
(i) FA have no auxiliary memory.
(ii) They do not deliver any output, except an indication of whether the
given input string is acceptable.
(iii) FA have a finite number of states.
(iv) They have a start state, but the number of final (acceptable) states
could be more than one.

Q.4.5.2.2 Construct a deterministic finite automaton for language L over
Σ = {0} such that it contains all string of size divisible by 6.
Answer: Here, L = {Λ, 000000, 000000000000, . . . }
Deterministic finite automaton (DFA) is shown in Fig. 2.1.

Figure 2.1: A FA that accepts string of length divisible by 6

In this case, the null string (Λ) is also acceptable by the automaton. Let
s be an arbitrary string input to DFA. Then qi represents the last state
of DFA, when |s| mod 6 = i, where |s| represents the length of string s.
Obviously, q0 becomes the only accepting state.

Q.4.5.2.3 Identify the sources of non-determinism in a non-deterministic
finite automaton (NDFA).
Answer: There are two sources of non-determinism.
(i) For given input and current state, we permit NDFA to move one of
the several states.
(ii) We also allow NDFA to move state without reading any input. This
is also called the null transition or Λ-transition.

9

Finite Automata

Q.4.5.2.4 Prove the following:
Let L1, L2 be two languages that are accepted by NDFAs M1 and M2 re-
spectively. Then there exists NDFAs accepting the following languages.
(i) L1 ∪ L2, (ii) L1L2, (iii) L∗1, (iv) Σ∗ − L1, (v) L1 ∩ L2.
Answer: (i) We need to design a NDFA for L1 ∪ L2, given that there
there exist NDFAs for the languages L1 and L2.
Let M1 = (Q1,Σ, δ1, s1, F1) and M2 = (Q2,Σ, δ2, s2, F2).

Figure 2.2: NDFA that accepts language L1 ∪ L2

Let M = (Q,Σ, δ, s, F) be the NDFA that accepts language L1 ∪ L2,
where Q = Q1 ∪Q2 ∪ {s}, F = F1 ∪ F2, s is the start state of M and δ
is defined as given in Fig. 2.2. Here, δ includes the transitions in δ1, δ2
and two more Λ transitions (null transitions).
(ii) We are given NDFAs for the languages L1 and L2. We need to find
a NDFA for L1L2, if it exists.
Let M1 = (Q,Σ, δ, s, F) be the NDFA that accepts language L1L2, where
Q = Q1 ∪ Q2, F = F2, s = s1 and δ as defined in Fig. 2.3. Transitions
include δ1, δ2 and some other Λ transitions from the final states of M1

to s2, the start state of M2.

Figure 2.3: NDFA accepting the language L1L2

10

Finite Automata

(iii) There exists an NDFA for language L1. Here we construct a NDFA
for L∗1.
New state s has been added and it is one of the final states. This en-
sure that the null string (Λ) also gets accepted by the NDFA M =
(Q,Σ, δ, s, F), where Q = {s}∪Q1, F = {s}∪F1 with s as the new start
state, and δ as defined by incorporating a set of Λ transitions from the
final states of M1 to s1, so that a string can be repeated arbitrarily
before getting it accepted (See Fig. 2.4).

Figure 2.4: NDFA accepting language L∗1

(iv) We give an idea of constructing a NDFA for Σ∗ − L1 = L1, given
that M1 is the NDFA for L1. Let M be the NDFA for L1. Machine M
is designed as follows:
M = (Q,Σ, δ, s, F), where F = Q−F1, so that the set of rejected strings
by M1 becomes the set of accepting strings by M .
(v) We shall construct a NDFA for L1 ∩ L2 with the help of previous

results. By De Morgan’s law, L1 ∩ L2 = L1 ∪ L2. Applying results (i)
and (iv), we can conclude that there exists a NDFA that accepts L1∩L2.

Q.4.5.2.5 Design a DFAs that accept
(i) L1 = {w ∈ {0, 1}∗: neither 00 nor 11 is a substring of w}
(ii) L2 = {w ∈ {0, 1}∗: either 101 or 1001 is a substring of w}
Answer: (i) The state diagram for the DFA accepting L1

11

Regular Expressions

3. Regular Expressions

Q.4.5.3.1 Give definition of regular expression.
Answer: Let Σ be an alphabet for a given language, |Σ| < ∞. The fol-
lowing constants are regular expressions.
(i) Empty set ∅, denoting the set {}, is a regular expression.
(ii) Null string Λ, denoting the set {Λ}, is a regular expression.
(iii) a ∈ Σ is a regular expression. It denotes the set {a}.
Consider that r and s are regular expressions over Σ. Then (r+ s), (rs)
and (r∗) are regular expressions over Σ.
NOTE: An empty string is a string instance of zero length, whereas a
null string has no value at all. Empty string is a string, but null string
is not a string.

Q.4.5.3.2 L = {s ∈ {0, 1}∗ : s has an unequal number of 0s and 1s.
Show that L∗ = {0, 1}∗.
Answer: {0, 1}∗ is the collection of all strings of 0s and 1s.
So, L ⊆ {0, 1}∗ (3.1)
Again, if L1 ⊆ L2 then L∗1 ⊆ L∗2.
Now, {0, 1} ⊆ L, since both strings 0 and 1 contain an unequal number
of 0s and 1s.
Then, {0, 1}∗ ⊆ L∗ (3.2)
From (3.1) and (3.2), L∗ = {0, 1}∗.

Q.4.5.3.2 Prove that {a, b}∗ = a∗(ba∗)∗.
Answer: {a, b}∗ represents set of all possible strings of a and b. For an
arbitrary string, the symbol b will occur arbitrary number of times in
that string, and symbol a occurs arbitrary number of times in between
two bs.

Figure 3.1: A string containing of a and b, where two successive bs
contain an arbitrary number of as

Note that ba∗ is repeating arbitrary number of times. See Fig 3.1. Thus,
any arbitrary string of a and b can be constucted by the regular expres-

28

Regular Expressions

sion a∗(ba∗)∗.

Q.4.5.3.3 Write the regular expression of the set of all strings on {a, b}
containing exactly one occurrence of the substring aaa.
Answer: Regular expression containing zero occurrence of a is b∗. Regu-
lar expression containing one occurrence of a is b∗ab∗. Regular expression
containing two occurrences of a is b∗ab∗ab∗. Regular expression contain-
ing zero occurrence of aaa is b∗

⋃
b∗ab∗

⋃
b∗ab∗ab∗.

Therefore, regular expression containing exactly one occurrence of the
substring aaa is (b∗

⋃
b∗ab∗

⋃
b∗ab∗ab∗) aaa (b∗

⋃
b∗ab∗

⋃
b∗ab∗ab∗).

Q.4.5.3.4 Find the regular expressions corresponding to the languages.
(i) {anbm |n < 4,m ≤ 3}
(ii) {w ∈ {a, b}∗ : |w| mod 3 = 0}
(iii) {anbm | n ≥ 4,m ≤ 3}
Answer: (i) (Λ +a+aa+aaa)(Λ + b+ bb+ bbb), where, Λ stands for null
string
(ii) ((a+ b)(a+ b)(a+ b))∗

(iii) aaaaa∗(Λ + b+ bb+ bbb)

Q.4.5.3.5 Describe the following sets using regular expressions:
(a) {abb, a, b, bba}
(b) {1, 11, 111, . . . }
Answer: (a) The set {abb, a, b, bba} is represented by abb+ a+ b+ bba.
(b) {1, 11, 111, . . . } is represented by 1(1)∗.

Q.4.5.3.6 Draw the transition systems that recognise the following regu-
lar expressions.
(i) Λ (null string), (ii) ∅ (empty string), (iii) a (∈ Σ)
Answer: Fig. 3.2(i), Fig. 3.2(ii) and Fig. 3.2(iii) show transition systems
for regular expressions (i), (ii) and and (iii) respectively.

Figure 3.2: State diagrams of finite automata accepting languages Λ
(null set), ∅ (empty set) and singleton set {a}

Note that the null set is not a set. But, empty set is a set containing no
element.

29

Regular Expressions

Q.4.5.3.7 Remove the null-moves (i.e., Λ moves) from the given automa-
ton (Fig. 3.3).

Figure 3.3: An NDFA

Answer: Each null-move is removed using a systematic process as given
in steps 1 to 4. See Fig. 3.4.

Figure 3.4: Removing null moves from the finite automaton given in
Fig. 3.3

Let there exists a Λ move from state q1 to state q2. We want to replace
this Λ move and the steps for removing a Λ move are given below.

30

