Introduction

1. Introduction

Q.4.2.1.1 What is an algorithm? Discuss the characteristics of an algo-
rithm.

Answer: An algorithm is a set of instructions to perform a task. An
algorithm which can be executed by a computer is called a computer
algorithm.

All algorithms need to perform a task. So, all algorihms have some out-
put. But an algorithm may not necessarily have an input. For example,
let us consider an algorithm to generate 10 prime numbers. Here we do
not have any input to be given as the given task is very specific. Let us
modify the definition of our problem. Suppose we would like to generate
n prime numbers, where n is an arbitrary integer. n must be given some
value at the run time. So, the algorithm of this task has an input. In
most of the cases, an algorithm performs a finite number of steps. Each
step of an algorithm must be unambiguous, and a basic one to carry out
the given task.

Q.1.4.1.2 Elaborate the idea of abstract data type (ADT)? Give exam-
ples.

Answer: An abstract data type is a collection of data (D), set of func-
tions (F'), and a set of rules (R) followed by the functions in F'.
Consider abstract data type SET, where SET is a collection of well de-
fined elements.

Ezample 1: Some of the operations that might be defined on abstract
data type SET are given below:

1. DefSet(A): This procedure makes the null set A.

2. Union(A, B,C): This procedure makes a new set C' as the union of
sets A and B.

3. Member(a, A): This function returns true if a € A, else it returns
false.

We can define a number of other operations on SET. Each set of oper-
ations performed on SET defines a distinct ADT. Let us define the triplet
(the set of elements, set of functions as defined above, the set rules that
the functions follow) as an abstract data type, called SET1. The set of
operations are performed on the data of the instance variables of SET1
data type. Each programming language facilitates to implement differ-
ent data types using its in-built data types. Note that we can implement

Introduction

SET1 using different in-built data types in different ways.

Ezxample 2: Another set of operations performed on data type SET are
given below.

1. DefSet(A) : This procedure makes the null set A.

2. Union(A, B,C): This procedure makes a new set C' as the union of
set A and set B.

3. Intersection(A, B,C): This procedure makes a new set C as the in-
tersection of set A and set B.

4. Size(A): This function finds the number of elements of the set A.
Let us call the corresponding abstract data type as SET2. Note that
we have defined another set of operations on SET in Example 2. Some
operations of ADTs SET1 and SET2 are common.

Q.1.4.1.3 What are the advantages of algorithms over flowcharts?
Answer: The advantages of algorithms include the following.

i. Algorithms can be expressed in a shorter form.

ii. Some problems involve parallel tasks. We can express such parallel
tasks using some special keywords in an algorithm. But a flowchart is
sequential in nature.

Q.4.2.1.4 Design a recursive algorithm to multiply two non-negative in-
tegers.
Answer: Function multiply () is expressed recursively as follows:

function multiply (x,y)
// It multiplies two non-negative integers x, y
if (z =0) or (y = 0) then return (0); end if
if (x = 1) then return (y); end if
if (y = 1) then return (x); end if
return (y + multiply (x — 1,y));
end function

Function multiply() keeps on adding y for x times.

Q.4.2.1.5 Define greatest common divisor ged() function using recursion.

Answer: The greatest common divisor (ged) of integers = and y is defined
ged(y, x), if y >z

recursively as follows: ged(z,y) =< =, ify=0
gcd(y,mod(z,y)), otherwise

Q.4.2.1.6 Present an algorithm to check the primality of an integer.

Introduction

Answer: Function isPrime () returns true, when the argument is prime,
else it returns false.

function isPrime (x)
for i + 2 to y/z do
if x mod i = 0 then return (false); end if
end for
return (true);
end function

It can be shown that an integer x(> 2) is prime if it is not divisible by
the following integers: 2,3,4, ..., int(\/z).

Q.4.2.1.7 Obtain prime factors of an integer using an algorithm.
Answer: All the factors of z, except 1 and x, lie between 2 and = div 2.

function primeFactors (x)
for i < 2 to (z div 2) do
if (x div i = 0) then
if isPrime (i) then print (7); end if
end if
end for
end function

The function primeFactors() calls isPrime() of Q.4.2.1.6 repeatedly to
find all the prime factors.

Q.4.2.1.8 Discuss the idea of dangling pointer in a programming lan-
guage that supports pointer.

Answer: Many programming languages such as C and C++4, have fea-
tures of handling pointer variables. A pointer variable is used to store
a memory location, that may be a start of a list, or array, or starting
address of a useful information. When the purpose of the memory, whose
start address is held in a pointer variable p is served, one may wish to
free the memory for other purposes as required by the operating sys-
tem. After the memory becomes free, by issuing an instruction such as
free(p) in C, the content of p becomes useless or illegal. Then pointer
p is called a dangling pointer. It is better to set p = NULL, after ex-
ecuting free(p). It implies that p does not point to any memory location.

Arrays, Iteration and Invariants

2. Arrays, Iteration and Invariants

Q.4.2.2.1 Consider a string represented by C language. Find a procedure
(function) to copy a string into an array.

Answer: A string in C language is ended with a null character ("\0’).
Function stringToArray() copies content of string s into an array a.

void stringToArray (char s|], char af]) {
int © = 0;
while (s[i] I="\0") {
ali] = sl i+ +;
}

return;

}

The last character of string s, i.e. the null character, is not copied into
array a.

Q.4.2.2.2 Write a function to copy an array into a string using C lan-
guage.

Answer: Consider an array a containing n characters. The function
arrayToString() copies the content of a into a string s. To make s as a
valid string, the last character of s is kept as null (\0’).

void arrayToString (char a [], char s [], int n) {
int 7;
for (i =0;i<n;i++){
s [i] = a [if;
}

s [i] = "\0%;
return;

}

Q.4.2.2.3 Design a recursive function in C language to reverse a string
read by the user.
Answer: A recursive function reverse() is designed below.

void reverse() {
char c;
if ((c¢ = getchar()) !="\n’) reverse();

Arrays, Iteration and Invariants

putchar(c);
return;

}

Using getchar() function, a character is read, and assigned to c¢. Then
the character is checked with return character ("\n’). A recursive call is
made, when the return character is not entered. The putchar() function
is not executed untill the user enters a string ended by return character
(\n’). When the return character is entered, the last character is dis-
played first by the putchar() function. The compiler uses system stack
to hold all the pending putchar() functions for the subsequent execu-
tions. Data structure stack being a LIFO data structure, the function
reverse() reverses a string read by the user.

Q.4.2.2.4 Find a procedure to find maximum of n numbers (n > 1).
Answer: Pseudo code of the algorithm is designed as follows.

read (n);
read (a);
max = a; t = 1;
for ¢ =2 ton do
read (a);
if (maz < a) then max = a; end if
end for
print (max);

CO 3 O UL i W N+

At every iteration, the current maximum is compared with current value
read, and the current maximum max is updated, when the current value
is larger. Note that we need not store all the elements entered by the user.

Q.4.2.2.5 Write an algorithm to generate all permutations of 0, 1, 2
using (i) for loop, (ii) while loop, (iii) goto statement.

Answer: (i) Permutations of 0, 1, 2 using for loop are retured by pro-
cedure permutel ().

procedure permutel ()

for i =0 to 2 do

for 7 =0to 2 do
for k=0 to 2 do
if (i # j) and (j # k) then print (7, j, k);
end for

end for

Arrays, Iteration and Invariants

end for
end procedure

Three nested for loops on variables ¢, j and k will generate all permu-
tations of (i, 7, k).

(ii) permute2 () finds all permutations of 0, 1 and 2 using while state-
ment.

procedure permute2 ()
1 =0;
while 7 < 2 do
J=0;
while 7 <2 do
k=0;
while £ < 2 do
if (i # j) and (j # k) then print (7, j, k);
k=k+1;
end while
J=J+1
end while
1 =1+ 1;
end while
end procedure

Three nested while loops on variables ¢, 7 and k will generate all permu-
tations of (7,7, k). This algorithm is the same as that of (i). The only
difference is that a for loop is implemented using a while loop.

(iii) permute3 () prints all permutations of 0, 1 and 2 using goto state-
ment.

procedure permute3 ()
1< 0;
loopi: if (i < 3) then
J < 0
loopj: if (j < 3) then
k + 0;
loopk: if (k < 3) then
if (i # j) and (j # k) then print (7, j, k); end if
k+—k+1;
goto loopk;

10

Lists, Recursion, Stacks and Queues

3. Lists, Recursion, Stacks and Queues

Q.4.2.3.1 State some disadvantages of linear list.

Answer: A few disadvantages of linear linked list are given below.

i. It is not possible to reach a preceding node from a given node.

ii. The head pointer, the address of the start node, needs to be reserved
always.

Q.4.2.3.2 We are given an array of numbers sorted in ascending order.
The array has been rotated from element with the least index to element
with highest index for a number of times. Then the array becomes a
collection of two sorted lists. Design an algorithm to find pivot element.
Answer: We first try to understand the rotation process. Let the sorted
elements in array A be 1, 4, 7, 9, 12. We assume that index starts from
0. After 2" rotation, the array becomes 7, 9, 12, 1, 4. The pivot element
becomes 12, i.e., A(2).

function findPivot (A, low, high)
if (high<low) return -1; end if
if (high = low) return low; end if
mid = (low+ high)/2;
if (mid < high) and (A(mid) > A(mid + 1)) return mid; end if
if (mid > low) and (A(mid) < A(mid — 1)) return (mid — 1); end if
if (A(low) > A(mid)) return findPivot(A,low, mid — 1); end if
return findPivot(A, mid + 1, high);
end function

Q.4.2.3.3 Design an algorithm to search an element in a pivoted sorted
array.
Answer: Refer to Q.1.4.3.2 regarding pivoted sorted array. Now we
present an algorithm to search an element in a pivoted sorted array of
size n.

function searchPivotedArray (A,n,key)
pivot = findPivot(A,0,n — 1);
// If the array is not rotated then apply binary search on the whole array
if (pivot = -1) return binarySearch (A,0,n — 1, key); end if

25

Lists, Recursion, Stacks and Queues

if (A(pivot) = key) return pivot; end if
if (A(0) < key) return binarySearch (A, 0, pivot — 1, key); end if
return binarySearch (A, pivot +1,n — 1, key);

end function

Q.4.2.3.4 Can you implement a queue using stack(s)?

Answer: Yes, it is possible to implement a queue using two stacks. Let
S1 and S2 be two stacks. We discuss here two major operations enQueue
and deQueue for adding and deleting an item for a queue respectively.
In this technique, for enQueue operation, the new element is entered at
the top of stack S1. In deQueue operation, if stack S2 is empty then all
the elements are moved to stack S2, and then the top of S2 is returned.
We discuss here both enQueue() and deQueue() operations.

enQueue(q, x)
i. push x into stack S1;

deQueue(q)
i. pop an element from stack S2, and return it;
ii. if S2 is empty then
while S1 is not empty do
pop z from S1;
push z into S2;
end while
end if
iii. if (S1 is empty) and (S2 is empty) then display error; end if

deQueue(q) takes O(n) time, and enQueue(q, z) takes O(1) time.

Q.4.2.3.5 Is it possible to implement a stack using queue(s)?

Answer: A stack can be implemented using two queues. Let S be a stack
to be implemented using queues Q1 and Q2. Main operations of a stack
are push() and pop() as discussed below.

push(S,)
i. enqueue x to QQ2;
ii. for every y € Q1 do
dequeue y from Q1;
enqueue y to Q2;
end for
swap the names of)1 and Q2;

26

Lists, Recursion, Stacks and Queues

pop(S)

i. dequeue an item from @)1, and return it;
push(S, z) takes O(n) time, and pop(S) takes O(1) time.

Q.4.2.3.6 Present an algorithm to reverse a circular linked list.
Answer: We assume the following node structure of linked list.

structure node

int data;

structure node* link;
end structure

Note that the second field is a pointer type, that poits to a similar struc-
ture of type node. Algorithm reverse() is given below to reverse a linked
list pointed by head.

function reverse (head)
if (head = NULL) return NULL; end if

// reverse technique is same as reversing a singly linked list

prev = NULL;
current = head;
repeat

next = current—link;
current—link = prev;
prev = current;
current = next;
until (current = head);
// adjusting the links so as to make the last node point to the first node
head —link = prev;
head = prev;
return head,
end function

Statements under repeat-until block is repeated unless the current points
to the node where head points to. The time complexity of reverse() al-
gorithm is O(n), where n is the number of nodes.

27

