Introduction

1. Introduction

Q.3.3.1.1 State different components of an operating system (OS).

Answer: OS is a system software, closely work with the hardware of the
machine. It has important components, such as process management,
file management, I/O device management, memory management, pro-
tection, network management, network services (distributed computing)
and user interface, so that a user can work efficiently and conveniently.

Q.3.3.1.2 List common services provided by all operating systems.
Answer: A partial list of common services provided by an operating
system are user interfacing, program development, program execution,
controlled access to files, input / output operations, communications,
resource allocation, error detection, accounting, security and protection.
An OS creates a working environment for the users.

Q.3.3.1.3 Describe the nature of the following operating systems: batch
operating system, distributed operating system and real time operating
system.

Answer: Batch operating system: It generally requires the program, data
and appropriate system commands to be submitted together in the form
of a job. It usually allows little or no modification between user and the
executing programs. It has a greater potential for resource utilization
than the simple serial processing in computer system, serving multiple
user programs that do not require interaction. Program with long execu-
tion time fits well in a batch system. Some applications suach as payroll
and bank transaction processing can fit well under a batch operating
system.

Distributed operating system: Network operating system is a good exam-
ple of a distributed operating system. Networking provides communica-
tion paths between two or more systems. It depends on networking for
the functions which have to be performed in a distributed mode. This is
also used to share communication task, and provides a rich feature to the
user network that varies upon the protocols used. The most commonly
used protocol is TCP.

Real-time operating system: These are used in the environment where
large number of events, mostly external to the computer system, must
be accepted and processed in a short time or within certain deadlines.

Introduction

Such applications include industrial controls telephone switching equip-
ments, light control and real-time simulations. These systems are also
frequently used in military applications and air crafts.

Q.3.3.1.4 What is multi-programming? How does it differ from mul-
titasking?

Answer: A modern operating system allows to run multiple processes
concurrently. When a process performs I/O operations, the next process
gets an opportunity to be executed by the CPU. The ability to exe-
cute multiple processes simultaneouly is called multi-programming. The
operating system manages all the processes effectively and efficiently.
These processes are also known as jobs, and are kept in a job pool. The
job pool consists of all those processes awaiting for allocation of main
memory and CPU. CPU is given one job out of all these waiting jobs,
and the job is brought to the main memory for execution. The processor
executes a job until it is interrupted by some external factor or it goes
for an I/O task.

Multi-tasking refers to execution of multiple tasks, such as playing MP3
music, editing documents in Microsoft Word and surfing internet using
Google Chrome, simultaneously. Each task is given a CPU time slice us-
ing a logical procedure, such as round robin algorithm. Multitasking is a
logical extension of multi programming. The way in which multitasking
differs from multi programming is that multiprogramming works solely
on the concept of context switching, whereas multitasking is based on
time sharing alongwith the concept of context switching.

Q.3.3.1.5 State the advantages of multiprogramming.

Answer: Multiprogramming has a number of advantages as stated in the
following paragraphs:

Increased CPU utilization: Multiprogramming improves CPU utilization
as it organizes a number of jobs, where CPU always has one to execute.
Increased throughput: Throughput means total number of programs ex-
ecuted over a fixed period of time. In multiprogramming, CPU can
execute anothe job, when the current job is engaged in I/O operations.
It results in an increased throughput.

Shorter turn around time: Turnaround time for short jobs is improved
greatly in multiprogramming.

Improved memory utilization: In multiprogramming, more than one pro-
gram resides in main memory. Thus, memory is utilized optimally.
Increased resources utilization: Multiple programs are actively compet-

Introduction

ing for resources. Thus, higher degree of resource utilization ac be
achieved.
Multiple users: Multiprogramming supports multiple users at a time.

Q.3.3.1.6 Operating system works as a resource manager - Comment
on it.

Answer: A computer system has hardware resources such as processor,
memory, I/O controllers, timers, disk devices, mice, network interfaces,
and printers; and software resources such as files and databases. An
important job of the operating system is to provide for an orderly and
controlled allocation of theses resources. When a computer (or network)
has multiple users, the need for managing and protecting these resources
become an important issue. Often, two or more users need to access the
same resource simultaneously. It is the job of the operating system to
manage such requests efficiently.

Resource management includes sharing resources in two different ways:
giving access to the resource by a small amount of time and sharing a
part of the resource. For example, single CPU could be allocated to each
precess for a small quantum of time, where as entire memory could be
shared among various processes.

Q.3.3.1.7 Discuss the advantages of a multiprocessor system.

Answer: A multiprocessor system offers many advantages:

i. Increased throughput: By increasing the number of processors, we
hope to get more work done in less time.

ii. Fconomy of scale: Multiprocessor systems can save more money than
multiple signal processor systems, since they share peripherals, mass
storage and power suppliers.

iii. Increased reliability: Work can be distributed among several proces-
sors. The failure of one processor does not halt the system.

Preliminary Concepts

2. Preliminary Concepts

Q.3.3.2.1 Elaborate the following services offered by an OS: error detec-
tion, protection and security, accounting.

Answer: An OS is always vigilant of possible errors. It takes an ap-
propriate action to ensure the correctness and consistency of current
computation. An error may occur from any part of the system. It could
be a hardware error or a software error. Examples of hardware error are
keyboard problem, mouse problem, memory problem and power cord
problem. Software errors include communication error, calculation er-
ror, control flow error and functionality error. Debugging facilities help
user to rectify certain types of error.

In a multiuser or networked computer system, there are several pieces of
information created by different people. Multiple processes may get ex-
ecuted concurrently. All the system resources are needed to have access
in a controlled manner. The protecttion ensures such controlled accces.
The security feature allows each user to authenticate himself or herself to
the system by means of user identification and password. It may involve
several levels of security for critical applications.

System keeps track of different resources allocated to different users. In
an application, a user may be billed based on the duration and usage
of different resources. OS maintains various information of a user, when
the user enters into the system. Accounting information is helpful to
reconfigure the system to improve overall performance.

Q.3.3.2.2 Draw a neat diagram of client-server model of an operating
system.

Answer: There are two modes of operation in an operating system: user
mode and kernel mode. In the user mode, an application or a service
runs.It concerns with the actual interface between the user and the sys-
tem. In the kernel mode, functions such as accessing system resources,
controlling hardware functions and processing program instructions are
done at the background. The kernel forms the core of an operating
system. It controls everything that happens in the computer. In the
client-server model of an operating system, the user mode is considered
as a client. The user mode accesses resources provided by the kernel
mode. Thus, kernel mode acts as the server. Figure 2.1 shows the de-
tails of an operating system using the ideas of user mode and kernel

12

Preliminary Concepts

mode.

[service | Rpplicaiion
— | —— |
— —

Application Interface

user mode(client)

kernel mode(server)

v

Dispatcher
Siarnal Scheduler Memory Manager 1/0 Device Manager
File System Security System Graphics System

|

| Hardware |

Figure 2.1: Structure of an operating system using client-server model

Q.3.3.2.3 State the functions of a command interpreter. Give examples
of command interpreter. State the approaches for implementing a com-
mand interpreter.

Answer: The functions of a command interpreter are to read a text com-
mand from the user and execute the command.

Some examples of command interpreter are given below:

i. The Bourne shell was the default shell for Version 7 Unix.

ii. Bash is a Unix shell and command language written by Brian Fox for
the GNU Project.

iii. The C shell is a Unix shell created by Bill Joy.

iv. CMD.EXE is the default command-line interpreter of the Windows
NT-family.

v. Windows PowerShell is a command processor based on .NET Frame-
work.

vi. COMMAND.COM is the default command-line interpreter for DOS.
viii. CMD.EXE is the default command-line interpreter for OS/2.

ix. DROS is a Java ME platform based DOS-like shell for smartphones.
x. Macintosh Programmer’s Workshop (MPW) is a software develop-
ment environment for the Classic Mac OS operating system, written by

13

Preliminary Concepts

Apple Computer.

There are two major approaches for implementing a command inter-
preter:

i. The command interpreter itself contains the code to execute the com-
mand. For example, a command to delete a file may cause the command
interpreter to jump to a section of its code that sets up the parameters
and makes the appropriate system call.

ii. The command interpreter does not understand the command in any
way. It merely uses the command to identify a file to be loaded into mem-
ory and to be executed. In Unix, to copy the file ”filel.txt” from the cur-
rently selected directory to the "newdir” directory, we type: cp filel.txt
newdir. The command interpreter would search for a file called cp, load
the file into memory, and execute it with the parameters filel.txt and
newdir.

Q.3.3.2.4 What is kernel?

Answer: The kernel is a computer program that forms the core of an
operating system. It has complete control over everything in the system.
During start-up of the computer, it is one of the first programs loaded.
It then handles the rest of start-ups. Kernel handles memory devices
and peripheral devices such as keyboard, monitor, printer, and speaker.
Kernel connects the application software to the hardware of a computer.

Q.3.3.2.5 If you are designing an operating system (OS) using objected
oriented programming technique, then state the design structure of your
OS.

Answer: For designing an operating system using objected oriented pro-
gramming technique, we create a modular kernel. Kernel is considered
as a set of core components and links to additional services either during
boot time or during run time. It allows dynamically loadable modules.
It is common in modern implementation of operating system.

Cetral module: Core kernel

Connecting modules: device and bus drivers, executable formats, file sys-
tems, loadable system calls, scheduling classes, stream modules, etc.
Each of these connecting modules has a direct link with the core kernel.
Overall, it represents a star-like structure with core kernel being at the
center.

14

Processes

3. Processes

Q.3.3.3.1 What are the tasks involved in process management?

Answer: The task of process management is performed by the OS. In
this regard, it performs

i. scheduling of processes and threads on processors;

ii. creating / deleting processes;

iii. starting, suspending and resuming processes;

iv. providing mechanisms for process synchronization and communica-
tion.

Q.3.3.3.2 State the difference between a program and a process.
Answer: A few differentiating points are given below:

i. A program is a sets of instructions to complete a task. A program in
execution is known as a process.

ii. A program is a passive entity. But, a process is an active entity.

iii. A program is stored in the secondary storage as a file. A process is

kept in the main memory. It also holds other resources such as CPU,
I/0 device and disk.

Q.3.3.3.3 How do you describe a process?

Answer: A process is described by many elements, including the follow-
ing:

Accounting information: Different accounting information such as pro-
cessor time and clock time are maintained.

Context data: They refer to data that are present in registers with in
the processor when the process is in running state.

ID: Each process is given a unique identifier to distinguish it from other
processes.

I/0 status: A process may have many outstanding I/O requests associ-
ated with files and I/O devices.

Memory pointers: There may be many pointers associated with a pro-
cess. It includes pointer to the program code, data associated with this
process, any memory block to be shared with other processes.

Priority: All the processes may not have the same pririty. High priority
processes are executed early by the CPU.

Program counter: The address of the next instruction to be executed.
State: A process has a number of states. For example, an executing

21

Processes

process is in the running state.

Q.3.3.3.4 With the help of a diagram, explain the states of a process.
Answer: The state diagram of a process is depicted in Fig. 3.1.

A

admission

interrupt Completed or
terminated

Running

Completion of
1/0 or event

waiting for I/O
or event

Figure 3.1: Process state diagram with five states

When a process executes, it changes the state. The state of a process
is defined by the current activity of the process and each process goes
through the following states.

New: The process has been created.
Running: Instructions are being executed.

Waiting: In this state process is waiting for some event, such as I/0O
completion, to occur.

Ready: The process is waiting to be assigned to a processor.
Ezited: The process has finished execution.

Q.3.3.3.5 State whether the statement true or false:

Each process is represented in the operating system by a process control
block.
Answer: True

Q.3.3.3.6 What is context switching?

Answer: Context switching involves storing the context or state of ex-
ecuting process, so that it can be reloaded when required. Then the

22

Processes

execution can be resumed from the same point as earlier. This is an
important feature of a multi-tasking OS. It allows a single CPU to be
shared by multiple processes. The main purpose of this switching is to
allocate the old process into the memory, and then switch to a new pro-
cess for execution.

Q.3.3.3.7 State a few reasons of a process termination.

Answer: A process may get terminated due to various reasons. It in-
cludes the following reasons.

x Attempting to execute a privileged instruction

x Completion of the process

* Exceeding the allocated time slice

« Failure to perform an I/O operation

x * Termination of the parent

* Unavailability of required memory demanded at a later stage

Q.3.3.3.8 If we have to design a two-state process model instead of a
five-state process model as shown in Fig. 3.1, propose the states and
present the model.

Answer: We consider two main states of the process stated as follows:
process is running on CPU, and process is not running on CPU. Process
state diagram using the above two states is given below:

dispatch

enter @ @ exit

1/0,wait,interrupt

Figure 3.2: Two-state process diagram

23

