
Algebra of Events

1. Algebra of Events

Q.1.5.1.1 What is the sample space for measuring the life-time of a bulb?
Answer: The life of a bulb can continue indefinitely. Thus, the sample
space, S = [0,∞), where a semi-closed set [a, b) = {x : a ≤ x < b}

Q.1.5.1.2 What do you mean by an event? What is an elementary event?
Answer: An event is a subset of the sample space. An event E is
said to occur on a particular trial of the experiment if the outcome
observed is an element of the set E. Consider the experiment of flip-
ping two coins. Let X be the event of getting atleast one head. Then
X = {(H,H), (H,T ), (T,H)}. Every sample point in the sample space
denotes an elementary event. Thus, Y = {(H,T )} is an elementary
event.

Q.1.5.1.3 Construct the sample space of three-child family that describes
the genders of the children with respect to birth order.
Answer: We assume that there are two outcomes at every birth: boy
(b) and girl (g). Fig. 1.1 shows a tree structure for a three-child family.
Sample space, Ω = {bbb, bbg, bgb, bgg, gbb, gbg, ggb, ggg}.

Q.1.5.1.4 Consider the experiment of tossing three coins.
i. Write the sample space.
ii. Find the event of getting exactly one head.
iii. Find the event of getting no head.
Answer: i. Sample space, S = {HHH,HHT,HTH,HTT, THH, THT,
TTH, TTT}, where H stands for event of occurring head, and T stands
for event of occurring tail
ii. The event of getting exactly one head = {HTT, THT, TTH}
iii. The event of getting no head = {TTT}

Q.1.5.1.5 What is the sample space of tossing a coin until one gets an
head?
Answer: One might get an head using 1 toss, and the event is E1 = {H}.
One might get an head using 2 tosses, and the event is E2 = {TH}.
One might get an head using 3 tosses, and the event is E3 = {TTH}.
Let Ei be the event of getting head using i tosses.
Thus, the sample space = ∪∞i=1Ei = {H,TH, TTH, . . . }

1



Algebra of Events

Figure 1.1: Tree diagram of a three-child family

Q.1.5.1.6 Let A and B be events in the same sample space. Then
A ∪ (A ∩B) = A.
Answer: Let Ω be the sample space.
A∪(A∩B) = (A∩Ω)∪(A∩B) = A∩(Ω∪B) [Distributive law, Q.1.5.1.7]
= A ∩ Ω = A

Q.1.5.1.7 Consider the events A,B and C in the same sample space.
Then A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).
Answer: This is a distributive law. We shall give a prooof of it.
Let x ∈ A ∩ (B ∪ C).
Then x ∈ A and x ∈ B ∪ C ⇒ x ∈ A and (x ∈ B or x ∈ C)
Case 1: x ∈ B
Then x ∈ A and x ∈ B ⇒ x ∈ A ∩B ⇒ x ∈ (A ∩B) ∪ (A ∩ C)
Case 2: x ∈ C
Then x ∈ A and x ∈ C ⇒ x ∈ A ∩ C ⇒ x ∈ (A ∩B) ∪ (A ∩ C)
Thus, x ∈ A ∩ (B ∪ C)⇒ x ∈ (A ∩B) ∪ (A ∩ C)
Then A ∩ (B ∪ C) ⊆ (A ∩B) ∪ (A ∩ C) (1.1)
Let x ∈ (A ∩B) ∪ (A ∩ C).
Then x ∈ A ∩B or x ∈ A ∩ C
Case i: x ∈ A ∩B
Then x ∈ A and x ∈ B ⇒ x ∈ A and x ∈ B ∪ C ⇒ x ∈ A ∩ (B ∪ C)
Case ii: x ∈ A ∩ C

2



Algebra of Events

Then x ∈ A and x ∈ C ⇒ x ∈ A and x ∈ B ∪ C ⇒ x ∈ A ∩ (B ∪ C)
Then x ∈ (A ∩B) ∪ (A ∩ C)⇒ x ∈ A ∩ (B ∪ C)
Thus, (A ∩B) ∪ (A ∩ C) ⊆ A ∩ (B ∪ C) (1.2)
(1.1) and (1.2) ⇒ (A ∩B) ∪ (A ∩ C) = A ∩ (B ∪ C)
Note: Another distributive law: A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

Q.1.5.1.8 Let Ai =
[
0, 1− 1

i

]
, for i = 1, 2, . . . .

Find ∪∞i=1Ai and ∩∞i=1Ai.
Answer: ∪∞i=1Ai = [0, 1) and ∩∞i=1Ai = {0}.

Q.1.5.1.9 If An ⊂ An−1 ⊂ · · · ⊂ A1 show that ∪ni=1Ai = A1 and
∩ni=1Ai = An.
Answer: We prove the result ∪ni=1Ai = A1 using induction on n.
For n = 1, the result is true, by default.
Let the result be true for n = k.
Thus, ∪ki=1Ai = A1

We shall show that the result is true for n = k + 1.
Then ∪k+1

i=1Ai = ∪ki=1Ai ∪Ak+1 = A1 ∪Ak+1 [by induction hypothesis]
=A1 [from the given condition]
Thus, the induction step follows.
[Second part]
We prove the result ∩ni=1Ai = An using induction on n.
For n = 1, the result is true, by default.
Let the result be true for n = k.
Thus, ∩ki=1Ai = Ak
We shall show that the result is true for n = k + 1.
Then ∩k+1

i=1Ai = ∩ki=1Ai ∩Ak+1 = Ak ∩Ak+1 [by induction hypothesis]
=Ak+1 [from the given condition]
Thus, the induction step follows.

Q.1.5.1.10 What is a trial? Give an example.
Answer: Consider an experiment, which is being repeated under iden-
tical conditions, does not give unique result. But the result is one of
the several possible outcomes. The experiment, repeated each time, is
known as a trial and the outcome is known as a case or sample point or
an elementary event. When we roll a die, an outcome is one of the faces
numbered from 1, 2, . . . , 6.

Q.1.5.1.11 Explain the following terms: exhaustive events, mutually ex-
clusive events, equally likely events, independent events.
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2. Combinatorial Analysis

Q.1.5.2.1 If A1, A2, . . . , Ak are k disjoint sets, then n(A1∪A2∪· · ·∪Ak) =
n(A1) + n(A2) + · · ·+ n(Ak).
Answer: We shall prove the result using the method of induction on k.
Let k = 2.
Event A1 ∪A2 can occur only by occurring either event A1 or event A2,
since A1 ∩A2 = φ.
Thus, n(A1 ∪ A2) = The number of sample points in A1 ∪ A2 = The
number of sample points in A1 + The number of sample points in A2 =
n(A1) + n(A2).
So, the result is true for k = 2.
Let the result be true for k ≤ p. We want to show that the result is true
for k = p+ 1.
n(A1 ∪A2 ∪ · · · ∪Ap+1) = n((A1 ∪A2 ∪ · · · ∪Ap) ∪Ap+1)
Note that events A1 ∪A2 ∪ · · · ∪Ap and Ap+1 are disjoint.
Then n(A1 ∪ A2 ∪ · · · ∪ Ap+1) = n(A1 ∪ A2 ∪ · · · ∪ Ap) + n(Ap+1) [by
induction hypothesis]
= n(A1) + n(A2) + · · ·+ n(Ap) + n(Ap+1) [by induction hypothesis]
So, the induction step follows.

Q.1.5.2.2 Prove that
n∑
k=0

(
N
k

) (
M
n− k

)
=

(
N +M

n

)
for integers N,M,n ≥ 0.
Answer: [Method 1]

(1+x)N+M = (1+x)N .(1+x)M =

(
N∑
k=0

(
N
k

)
xk

)(
M∑
l=0

(
M
l

)
xl

)

Then, (1 + x)N+M =
N∑
k=0

M∑
l=0

(
N
k

)(
M
l

)
xk+l

We are interested in collecting the coefficients of xn from both sides for
those terms for which k + l = n.
N+M∑
n=0

(
N +M

n

)
xn =

N+M∑
n=0

n∑
k=0

(
N
k

)(
M
n− k

)
xn.

The result follows.
[Method 2] Consider a set of (N + M) elements. We divide it into two
parts: one with N elements and other with M elements. If we wish to
select n elements, then we first choose k elements from the first part
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(k ≤ n) and the remaining (n − k) elements from the second part. For

each k, there are precisely

(
N
k

)(
M
n− k

)
possibilities. Summing

over all values of k, we obtain an expression for

(
N +M

n

)
.

Q.1.5.2.3 State and prove Pascal’s identity.

Answer: Pascals’s identity states that

(
n
k

)
=

(
n− 1
k − 1

)
+

(
n− 1
k

)
,

for any positive integers k and n.
[Method 1]

When k > n,

(
n
k

)
= 0 =

(
n− 1
k − 1

)
+

(
n− 1
k

)
Thus, the result is true.
Now we assume that k ≤ n.(
n− 1
k − 1

)
+

(
n− 1
k

)
= (n−1)!

(k−1)!(n−k)! + (n−1)!
k!(n−k−1)!

= (n− 1)!
[

k
k!(n−k)! + n−k

k!(n−k)!

]
= (n− 1)!

[
n

k!(n−k)!

]
= n!

k!(n−k)! =

(
n
k

)
[Method 2]

For k = 0,

(
n− 1
k − 1

)
=

(
n− 1
−1

)
= 0, and

(
n
0

)
=

(
n− 1

0

)
.

For k = n,

(
n− 1
k

)
=

(
n− 1
n

)
= 0, and

(
n
n

)
=

(
n− 1
n− 1

)
.

The proof of the above result is give below for 0 < k < n.
Let {a1, a2, . . . , an} be the set of elements under consideration. There
are two types of k-subsets: subsets that contain an and subsets that do
not contain an.
Case 1: When a k-subset does not contain an, then the k-subset is formed

from {a1, a2, . . . , an−1}. The number of such subsets is

(
n− 1
k

)
.

Case 2: When a k-subset contains an, then k − 1 elements are selected

from {a1, a2, . . . , an−1}. The number of such subsets is

(
n− 1
k − 1

)
.

Adding the k-subsets of Case 1 and Case 2, we get the total number of
k-subsets. The result follows.

Q.1.5.2.4 State binomial theorem. Prove it.

Answer: Binomial theorem states that (x+ y)n =
n∑
k=0

(
n
k

)
xkyn−k,

for n = 1, 2, 3, . . . (2.1)
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[Method 1]
For n = 1, LHS = x+ y.

RHS =

(
1
0

)
x0y1−0 +

(
1
1

)
x1y1−1 = y + x = LHS

The theorem holds for n = 1. Assume that the theorem holds for n− 1.
We need to show that the theorem holds for n.

(x+ y)n = (x+ y)(x+ y)n−1 = (x+ y)

n−1∑
k=0

(
n− 1
k

)
xkyn−1−k

=

n−1∑
k=0

(
n− 1
k

)
xk+1yn−1−k +

n−1∑
k=0

(
n− 1
k

)
xkyn−k

Let i = k + 1 for the first sum and i = k for the second sum.

(x+ y)n =

n−1∑
i=1

(
n− 1
i− 1

)
xiyn−i +

n−1∑
i=0

(
n− 1
i

)
xiyn−i

= xn +

n−1∑
i=1

[(
n− 1
i− 1

)
+

(
n− 1
i

)]
xiyn−i + yn

= xn +

n−1∑
i=1

(
n
i

)
xiyn−i + yn [Pascal’s identity, Q.1.5.2.3]

=
n∑
i=0

(
n
i

)
xiyn−i

[Method 2]
In the expansion of (x1 + y1)(x2 + y2) . . . (xn + yn), each term contains n
of xi and yi, i = 1, 2, . . . , n. There are 2n such terms. When n = 2, we
have (x1 + y1)(x2 + y2) = x1y1 + x1y2 + x2y1 + x2y2.
When x1 = x2 = · · · = xn = x and y1 = y2 = · · · = yn = y, how many
of the 2n terms in the sum will have k of the xs and (n− k) of the ys as
factors? The form of such term is xkyn−k, and the number of such terms
is equal to the number of choices of finding k x’s out of possible n x’s,

i.e.,

(
n
x

)
.

Thus, (x+ y)n =

n∑
k=0

(
n
k

)
xkyn−k.

Q.1.5.2.5 How many integers between 1 and 300 (inclusive) are
i. divisible by at least one of 3, 5, 7?
ii. divisible by 3 and by 5 but not by 7?
iii. divisible by 5 but by neither 3 nor 7?
Answer: Let A = {n|1 ≤ n ≤ 300 ∧ 3 divides n},
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3. Probability Models

Q.1.5.3.1 What is a probability model?
Answer: A probability model consists of a nonempty set called the sam-
ple space S; a collection of events that are subsets of S; and a probability
measure P having the following properties:
i. P (A) ∈ [0, 1], where event A is defined on the sample space S.
ii. P (S) = 1.
iii. P is countably additive. Let A1, A2, . . . be a finite or countable se-
quence of disjoint events.
Then P (A1 ∪A2 ∪ . . . ) = P (A1) + P (A2) + . . . (3.1)
(i) - (iii) are called axioms of probability.

Q.1.5.3.2 Show that P (∅) = 0, where ∅ is null set.
Answer: Let E1, E2, E3, . . . be the sequence of events such that S = E1,
and E2 = E3 = · · · = ∅, where S is the sample space.
Events are mutually exclusive, and

⋃∞
i=1Ei = S.

Using axiom (iii), we have
P (S) = P (E1) + P (E2) + P (E3) + · · · = P (S) + P (E2) + P (E3) + . . .
⇒ P (S) = P (S) + P (∅) + P (∅) + . . .
⇒ P (∅) = 0, where ∅ ⊆ S, and P (∅) ≥ 0 [ Axiom (i) ]

Q.1.5.3.3 Let E be an event defined on sample space S. Show that
P (Ec) = 1− P (E), where P (Ec) is the complement event of E.
Answer: 1 = P (S) [ Axiom (ii) ]
⇒ 1 = P (E ∪ Ec) [ S = E ∪ Ec ]
⇒ 1 = P (E) + P (Ec) [ Axiom (iii) ]
⇒ P (Ec) = 1− P (E)

Q.1.5.3.4 Show that P (E) ≤ P (F ), if E ⊆ F .
Answer: F = E ∪ (Ē ∩ F ), since E ⊆ F
Note that events E and Ē ∩ F are mutually exclusive.
Using Axiom (iii), P (F ) = P (E) + P (Ec ∩ F ) (3.2)
Using Axiom (i), P (Ec ∩ F ) ≥ 0.
From (3.2), P (F ) ≥ P (E).

Q.1.5.3.5 What is relative frequency? Give an example.
Answer: Consider an experiment that is performed n times. Each per-
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formance is called a trial (see Q.1.5.1.10). Let an event E occur in nE
trials. Then the ratio nE

n is called the relative frequency of E in the n
trials, and denoted by f(E,n) = nE

n .
An unbiased coin is tossed 100 times, and tail (T ) appears 52 times.
Then the relative frequency of T is 52/100 = 0.52.
When n is a large number, P (E) ≈ f(E,n).

Q.1.5.3.6 State and prove the formula of probability for union of events.
Answer: Probability of union of events: For any n events E1, E2, . . . , En,
P (E1 ∪E2 ∪ · · · ∪En) =

∑
i P (Ei)−

∑
i<j P (Ei ∩Ej) +

∑
i<j<k P (Ei ∩

Ej ∩ Ek)− · · ·+ (−1)n+1P (E1 ∩ E2 ∩ · · · ∩ En)
Proof: We shall prove it using the method of induction on n. Let n = 2.
Then P (E1 ∪ E2) = P [(E1 ∩ Ec2) ∪ (Ec1 ∩ E2) ∪ (E1 ∩ E2)]
Events E1 ∩ Ec2, Ec1 ∩ E2 and E1 ∩ E2 are mutually exclusive.
Thus, P (E1 ∪ E2) = P (E1 ∩ Ec2) + P (Ec1 ∩ E2) + P (E1 ∩ E2), (3.3)
using Axiom (iii), Q.1.5.3.1
P (E1) = P [(E1 ∩ E2) ∪ (E1 ∩ Ec2)]
= P (E1 ∩ E2) + P (E1 ∩ Ec2) [Axiom (iii)]
Then P (E1 ∩ Ec2) = P (E1)− P (E1 ∩ E2)
Similarly, P (Ec1 ∩ E2) = P (E2)− P (E1 ∩ E2)
From (3.3),
P (E1 ∪E2) = P (E1)− P (E1 ∩E2) + P (E2)− P (E1 ∩E2) + P (E1 ∩E2)
So, P (E1 ∪ E2) = P (E1) + P (E2)− P (E1 ∩ E2)
Thus, the result is true for n = 2.
We assume that the result is true for n ≤ k. We shall show that the
result is true for n = k + 1.
P (E1 ∪ E2 ∪ · · · ∪ Ek ∪ Ek+1) = P [(E1 ∪ E2 ∪ · · · ∪ Ek) ∪ Ek+1]
= P (E1 ∪ E2 ∪ · · · ∪ Ek) + P (Ek+1)− P [(E1 ∪ E2 ∪ · · · ∪ Ek) ∩ Ek+1],
using induction hypothesis
=
∑

i P (Ei)−
∑

i<j P (Ei∪Ej)+
∑

i<j<k P (Ei∩Ej∩Ek)−· · ·+(−1)n+1P (E1∩
E2 ∩ · · · ∩ En) + P (Ek+1)− T , (3.4)
where, T = P [(E1 ∩ Ek+1) ∪ (E2 ∩ Ek+1) ∪ · · · ∪ (Ek ∩ Ek+1)],
applying distributive law
T =

∑
i P (Ei ∩ Ek+1)−

∑
i<j P (Ei ∩ Ej ∩ Ek+1) + . . . , (3.5)

applying induction hypothesis
Using (3.4) and (3.5), we conclude that the induction step follows.

Q.1.5.3.7 Discuss classical (apriori) concept of probability. State the
limitations of the concept.
Answer: Assume that a trial in an experiment results in one of n ex-
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haustive, mutually exclusive and equally likely cases, and m of them are
favourable to the happening of an event E.

P (E) = Number offavourable cases
Number of exhaustive cases = m

n

There are limitations of the above definition.
i. Outcomes of a trial may not be equally likely.
ii. The number of exhaustive cases in a trial may be infinite.

Q.1.5.3.8 Elaborate the emperical (statistical) concept of probability.
Answer: Consider an experiment, where the trials are repeated under es-
sentially homogeneous and identical conditions. Then the limiting value
of the ratio of the number of times an event happens to the number of
trials, when the number of trials become indefinitely large, is called the
probability of the the event.
Refer to the concept of relative frequency (Q.1.5.3.5). Let an event E
occurs nE times in n trials. Let f(E,n) be the relative frequency of
event E in n trials. Then emperical probability of E is defined as
P (E) = limn→∞ f(E,n).

Q.1.5.3.9 Let E1, E2, . . . , En be n events on the same sample space. Prove
that P (

⋃n
i=1Ei) ≤

∑n
i=1 P (Ei).

Answer: We shall prove it using the method of induction on n.
When n = 2, P (E1 ∪ E2) = P (E1) + P (E2)− P (E1 ∩ E2) [Q.1.5.3.6]
Using Axiom (i), P (E1 ∩ E2) ≥ 0 [Q.1.5.3.1]
Then, P (E1 ∪ E2) ≤ P (E1) + P (E2)
We assume that the result is true for n = k. We shall prove that the
result is true for n = k + 1.
P (E1 ∪ E2 ∪ · · · ∪ Ek ∪ Ek+1) = P [(E1 ∪ E2 ∪ · · · ∪ Ek) ∪ Ek+1]
= P (E1 ∪ E2 ∪ · · · ∪ Ek) + P (Ek+1) − P [(E1 ∪ E2 ∪ · · · ∪ Ek) ∩ Ek+1]
[Q.1.5.3.6]
≤
∑k

i=1 P (Ei) +P (Ek+1)−P [(E1 ∪E2 ∪ · · · ∪Ek)∩Ek+1] [by induction
hypothesis]
≤
∑k+1

i=1 P (Ei) [Axiom (i), Q.1.5.3.1]

Q.1.5.3.10 Three unbiased coins are flipped. Find the probability that
first and third coins show the same face.
Answer: Sample space = {(H,H,H), (H,H, T ), (H,T,H), (H,T, T ), (T,H,H),
(T,H, T ), (T, T,H), (T, T, T )}
Let E be the event that first and the third coins turn into the same face.
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