
Introduction

1. Introduction

Q.4.1.1.1 Explain the usage of header files.
Answer: In C programs, we use many library functions. All the library
functions in C have been grouped into different categories. For example,
all string processing functions are kept in string.h header file. If a pro-
gram uses any string processing operation, it must include the string.h
header file. So, instead of including all library header files in a particular
C program, we include only those header files, from where the functions
have been refered to. So, this approach reduces the size of the object
program.

Q.4.1.1.2 Are the following lines executable statements?
include <stdio.h>
define TRUE 1
Answer: Line number 1 is not an executable statement. It is a directive
to preprocessor. It directs the preprocessor to replace line 1 by all the
functions available in the header file stdio.h.
Line number 2 is also not an executable statement. It is a directive to
preprocessor. It directs the preprocessor to replace the word TRUE by
1 at every occurrence of the word TRUE in the given C program.

Q.4.1.1.3 Name a computer program which never stops.
Answer: Operating system is a complex computer program that never
stops, even when the computer remains idle.

Q.4.1.1.4 What are escape sequences? How do newline and carriage
return characters differ?
Answer: C uses certain combination of characters to represent another
character. For example, \a and \b represent audible bell and backspace
character respectively.
The newline character resets the cursor to the leftmost column on the
screen and moves the cursor down one line. But carriage return charac-
ter resets the cursor to the leftmost column on the current line without
advancing to the next line. Consider the following lines of code.

printf("Akash\n");

printf("Nandita\n");

1

Introduction

printf("Ava");

printf("\rYeshwant");

It generates the following output.
Akash
Nandita
Yeshwant
It prints also the string ”Ava” at the third line. But, due to the fourth
printf statement, the cursor is brought at the leftmost column, and
displays string ”Yeshwant”. Then the string ”Ava” gets erased by the
string ”Yeshwant”.

Q.4.1.1.5 What is the difference between the following two statements.

printf("\n \n \n");

printf("\n", "\n", "\n");

Answer: In a printf statement, it is possible to have only one control
string.
For the first statement, three blank lines will be produced.
For the second statement, there is a warning. Only one blank line will
be produced. The second and third control strings of the second printf
statement will be ignored.

Q.4.1.1.6 Express 319 × 109 using C language.
Answer: There are many ways one could represent 319 × 109. Some
representations are given below.
319.0e9
.319e+12
3.19E11
319E9

Q.4.1.1.7 Explain the following constants using C language.
1000000UL, 071U, 0x12UL, 0xab
Answer: 11000000UL → The number (1000000) in decimal system and
it is unsigned long.
071U → The number (71) in octal system and it is unsigned.
0x12UL → The number (12) in hexadecimal system and it is unsigned
long.
0xab → The number (ab) in hexadecimal system.

2

Introduction

Q.4.1.1.8 What is difference between a character and the correspond-
ing single character string?
Answer: The character constant and the corresponding single character
string are not the same. A single-character string consists of two char-
acters - the specified character followed by the null character. The null
character is represented by \0.

Q.4.1.1.9 Let variables x and y be of integer and real type respectively.
Express statement y = 1

1− 1

1− 1
1−x

in C.

Answer: The assignment operation is expressed in C as follows:

y = (float)1 / (1 - (float)1 / (1 - (float)1 /(1-x)));

To perform the division operation correctly, we need to typecast one of
two operands of division operation into float type. Here, integer number
1 gets converted into real number 1.0 by (float)1. This process is known
as typecasting. When x = 5, y receives value as 5.0.

Q.4.1.1.10 Discuss priorities of basic arithmetic operations.
Answer: Basic operators and their priorities are given below.

Priority Operators

high *, /, % (remainder operator)

medium +, -

low =

Q.4.1.1.11 What is associativity rule? Give an example.
Answer: Associativity rule defines the order of execution of consecutive
operations within the same precedence group, when there are no paren-
theses.
For example, x/y ∗ z%w can be written as ((x/y) ∗ z)%w because, /, *,
% have the same priority and their associativity is kept fixed from left
to right. Let x = 4, y = 2, z = 2, w = 3.
Now, ((x/y) ∗ z)%w = ((4/2) ∗ 2)%3 = (2 ∗ 2)%3 = 1.
If we evaluate the expression 4/2 ∗ 2%3 using a C program, it results 1.
But, any arbitrary order of computation would generate wrong result.
Since, /, * and % have the same priority, computing % operation first
would produce the result 4, since 4/2 ∗ (2%3) = 4/2 ∗ 2 = 2 ∗ 2 = 4.
Therefore, the associativity plays an important role in computation of
an expression.

3

Variables, Operators and Expressions

2. Variables, Operators and Expressions

Q.4.1.2.1 Determine the output of the following statements.

p = q = r = 1;

printf("\n p = %d q = %d r = %d", p, q, r);

p = p-(-q---r);

printf("\n p = %d q = %d r = %d", p, q, r);

Answer: The output of the above statements are given below.
p = 1 q = 1 r = 1
p = 3 q = 0 r = 1
Consider the statement p = p− (−q −−− r);
The unary − before q has the highest priority in right side of = state-
ment. Again unary −− cannot be associated with r as predecrement
operator because of presence of binary −. So −− is treated post decre-
ment operation and must be associated with −q. Post decrement takes
place only after completion of assignment operation. So, the output is
calculated as follows.
p = 1− (−1− 1) = 3
q = 1− 1 = 0
r = 1, as r is not affected.

Q.4.1.2.2 Find the value of the expression

e = 7*6/8/3*5*2/4;

Answer: The expression is evaluated from left to right. A multiplication
is carried out before a division operation, if multiplication comes left
of division, otherwise, the division is carried out before multiplication.
Thus, e = 7∗6/8/3∗5∗2/4 = 42/8/3∗5∗2/4 = 5/3∗5∗2/4 = 1∗5∗2/4 =
5 ∗ 2/4 = 10/4 = 2. Note that, a division operation results an integer if
both the operands are integer.

Q.4.1.2.3 If a computer uses b-bits space to store (i) integer, (ii) un-
signed integer then what range of values may fall in this space?
Answer: (i) −2b−1 to +2b−1 - 1, (ii) 0 to 2b - 1

Q.4.1.2.4 Determine the output generated by the following statements.

7

Variables, Operators and Expressions

i = 0; /* line 1 */

printf ("i = %d \n", i); /* line 2 */

printf ("i = %d \n", i++); /* line 3 */

printf ("i = %d \n", ++i); /* line 4 */

Answer: Output generated by the above code is shown below.
i = 0
i = 0
i = 2
Note that, at line 3, the value of i is incremented by 1 after printing the
value of i. So, before executing line 4, the value of i is 1. At line 4, the
value of i is incremented by 1 before printing the value of i.

Q.4.1.2.5 How many temporary variables are required to exchange the
contents of u and v?
Answer: Minimum number of temporary variables required to exchange
the content of u and v is 0. The exchange operation can be done using
the following codes.
u = u+ v; v = u− v; u = u− v;
Let us check the exchange operation. Let u = 15, v = 10
Then u = u+ v = 15 + 10 = 25
v = u− v = 25− 10 = 15
u = u− v = 25− 15 = 10

Q.4.1.2.6 Compute a/b and a%b where, (a, b) = (13, 4), (-13, 4), (13,
-4), (-13, -4).
Answer: We have dividend = divisor × quotient + remainder (1.1)
In C language, / represents integer division operation, and % represents
remainder operation, when both the operands are integer. If dividend
and division are opposite in sign then quotient is negative and we get
the following.

divisor dividend quotient

4 13 3

4 -13 -3

-4 13 -3

-4 -13 3

Now using equation (1.1) we obtain the remainder for each case.

8

Variables, Operators and Expressions

divisor dividend quotient remainder

4 13 3 1

4 -13 -3 -1

-4 13 -3 1

-4 -13 3 -1

Q.4.1.2.7 Find the output of the following program segment.

float i = 12.870, j = 34.13;

printf("\n Sum of i+j = %f ", i+j);

printf("\n Sum of i+j = %1.2f ", i+j);

printf("\n Sum of i+j = %5.5f ", i+j);

printf("\n Sum of i+j = %g", i+j);

printf("\n Sum of i+j = %e", i+j);

Answer: The output of the above statements are given below.
Sum of i+ j = 47.000000
Sum of i+ j = 47.00
Sum of i+ j = 47.00000
Sum of i+ j = 47
Sum of i+ j = 4.700000e+ 01
Conversion character sequence %1.2f allows a real number to be dis-
played with two digits after decimal point. If we use conversion character
g, the trailing zeroes, trailing decimal point will not be displayed. By
using conversion character e, a floating point value is displayed with an
exponent.

Q.4.1.2.8 Find the output of the following code segment.

int i = 97;

char c = ’a’;

printf("i = %c", i);

printf("\nc = %d", c);

Answer: The output of the above code is given below.
i = a
c = 97
If we display an integer as a character then the integer is treated as an
ASCII value and the corresponding character gets printed and vice versa.

Q.4.1.2.9 i is an integer variable. Find the value of i, when

9

Control Statements

3. Control Statements

Q.4.1.3.1 Find the value of b after executing the following lines of code.

int b, a = 15;

b = (a > 5 ? (a <= 10 ? 100 : (a < 15 ? 200 : 300)): 400);

Answer: Initially, a = 15, and hence a > 5 is true. Thus, the expression
a <= 10 ? 100 : (a < 15 ? 200 : 300) gets evaluated. The condition
a < 15 becomes false. Thus, the value of righthand side of the assign-
ment statement becomes 300, and it gets assigned to b. Hence, b = 300.

Q.4.1.3.2 Express the code given in Q.4.1.3.1 using if -else statement.
Answer: An equivalent code using if -else statement is given below.

int b, a = 15;

if (a > 5)

if (a <= 10) b = 100;

else if (a < 15) b = 200;

else b = 300;

else b = 400;

Q.4.1.3.3 Express the following condition without using NOT operator.

if (!true)

Answer: if (true == 0)

Q.4.1.3.4 Compare while loop with do-while loop.
Answer: In a while loop, the given condition is tested at the beginning.
Therefore, the body of the while loop may not get executed at all. But,
in a do-while loop, the given condition is tested at the last. So, the body
of do-while loop gets executed atleast once. The syntax of a while loop
in C language is below:

while (condition) {

statement(s);

}

The syntax of a do-while loop in C language is below:

14

Control Statements

do {

statement(s);

} while (condition);

See flowcharts in Fig. 3.1.

Figure 3.1: Flowcharts of while and do-while loops (within dotted part)

Q.4.1.3.5 Find the output for the following code.

int i = 0, j = 1;

if (i == 0) (j > 1 ? printf("\n123") : printf("\n ABC"));

else printf("\n123 ABC");

Answer: Condition i == 0 is true. Thus, the statement

(j > 1 ? printf("\n123") : printf("\n ABC"));

is evaluated. This statement employs conditional or ternary operator
(?:). This is similar to if -else statement. Here, the condition j > 1 is
false. So. the statement

printf("\n ABC")

15

Control Statements

is executed. The output is given below.

ABC

Q.4.1.3.6 Find the output for the following code.

int i = 10;

if (i == 20);

printf ("The value of i is 20");

Answer: The output of the above code is given as follows:

The value of i is 20

Our intension is to display the string only when i is 20. But, the vari-
able i has been initialized to 10. So, the condition (i == 20) becomes
false. Thus, the body of if-block cannot be executed. Note that body
of if-block contains an empty statement, i.e., only a semicolon (;). The
printf statement remains outside the body of if-statement, and thus, it
gets executed irrespective of the condition placed in the if-statement.

Q.4.1.3.7 Find the output for the following program segment.

a = 10; b = 20;

if (a = b)

printf ("\n a and b are equal");

else

printf ("\n a and b are not equal");

Answer: The output of the above lines of code is given below:

a and b are equal

Note the condition part of if -statement. In the condition part, we have
used an assignment statement operation rather than equality condition.
As a result, the value of b is assigned to a, and the value of condition
becomes 20. The value of condition becomes true, as 20 is non-zero.

Q.4.1.3.8 Find the outputs of Code (a) and Code (b)

----------------- Code (a) -----------------

avg = 35.0;

if (avg < 40.0) printf ("Fail");

16

