
Introduction

1 Introduction

Q.5.3.1.1 State important characteristics of a software.
Answer: A software has following important characteristics:
∗ Software is engineered, not manufactured.
∗ Software does not wear out.
∗ Most of the softwares are custom built rather than being assembled
from components.

Q.5.3.1.2 Explain the role of system analyst in traditional business.
Answer: A systems analyst is an information technology (IT) profes-
sional who specializes in analyzing, designing and implementing infor-
mation systems. Systems analysts assess the suitability of information
systems in terms of their intended outcomes and liaise with end users,
software vendors and programmers in order to achieve these outcomes
(Wikipedia).
A systems analyst may underate the following tasks:
→ Identify, understand and plan for organizational and human impacts
of planned systems, and ensure that new technical requirements are prop-
erly integrated with existing processes and skill sets.
→ Plan a system flow from the ground up.
Interact with internal users and customers to learn and document re-
quirements that are then used to produce business requirements docu-
ments.
→ Write technical requirements from a critical phase.
→ Interact with software architect to understand software limitations.
→ Help programmers during system development by providing use cases,
flowcharts, UML diagrams and other concepts.
→ Document requirements or contribute to user manuals.
→ Whenever a development process is conducted, the system analyst is
responsible for designing components and providing that information to
the developer.

Q.5.3.1.3 Classify software into different categories.
Answer: There are various ways one could classify software. Based on
nature of application of a software, some important categories are ap-
plication software, embedded software, web application, artificial intelli-
gence software and system software.

1



Introduction

Q.5.3.1.4 What are the factors to be considered in the system model
construction?
Answer: Some important factors that are to be considered for system
modeling are assumption, simplification, limitation, preferences and con-
straints.

Q.5.3.1.5 What is an embedded system?
Answer: An embedded system is a computer system with a dedicated
function within a larger mechanical or electrical system, often with real-
time computing constraints. It is embedded as part of a complete device
often including hardware and mechanical parts. Today, embedded sys-
tems control many devices that are in common use.

Q.5.3.1.6 Which of the following are the fundamental process activities?
i. software development, ii. software validation, iii. software evolution,
iv. software specification , v. all of these
Answer: v

Q.5.3.1.7 Define software process.
Answer: Software process is defined as the structured set of activities
that are required to develop a software system.

Q.5.3.1.8 —– are software systems which are designed to support routine
activities in the software process such as editing and designing diagram,
checking diagram consistency and keeping track of program tests which
have been running.
Answer: CASE tools

Q.5.3.1.9 Discuss essential properties of a system.
Answer: There are two essential system properties:
Functional property: Functional properties that appear when all the
parts of a system work together to achieve certain objectives.
Non-Functional property: Non-functional properties such as reliability,
performance, safety and security. These relate to the behaviour of the
system in its operational environment.

Q.5.3.1.10 Present a comparative study between ISO 9000 and CMM
process model standards.
Answer: ISO stands for international standard organization. CMM

2



Introduction

stands for capability maturity model. Major differences between these
two quality standards are given below:
i. ISO 9000 applies to any type of industry. CMM is specially developed
for software industry.
ii. ISO 9000 addresses corporate business process. CMM focuses on the
software engineering activities.
iii. ISO 9000 specifies minimum requirement. CMM gets nto technical
aspect of software engineering.
iv. ISO 9000 provides pass or fail criteria. CMM provides grade for pro-
cess maturity. CMM has 5 levels: initial, repeatable, defined, managed
and optimization.
v. ISO 9000 does not specify sequence of steps required to establish
a quality system. CMM reconnects the mechanism for step by step
progress through its successive maturity levels.

Q.5.3.1.11 Discuss major challenges faced in engineering a software.
Answer: Some key challenges are discussed here.
Heterogeneity : A new software may have to interact with different types
of systems. Developing different interfaces with different softwares is a
major issue.
Delivery : The time of delivery of a complete software is a critical issue.
Also, it needs to confirm all quality requirements. It is a challenge of
shortening delivery times for large and complex systems without com-
promising system quality.
Trust : People need to believe that the software is working fine. We need
to develop techniques that demonstrate that software can be trusted by
its users.

Q.5.3.1.12 Identify attributes of a good software.
Answer: The specific attributes that a good software will have depend
on the application. Some general characteristics of a good software are
mentioned below:
Maintainability : Software should be developed in such a way that the
maintenance of the software bs to be easy. Software should be able to
adopt with the changing needs of the customers.
Dependability : We should be able to trust the software in many senses
such as reliability, security and safety. Software should not cause physi-
cal or economic damage in the event of system failure.
Efficiency : Efficient software shows good behaviour in terms of respon-
siveness, processing time, memory utilisation, and other relevant factors.

3



Different Systems

2 Different Systems

Q.5.3.2.1 How do you judge the reliability of a system?
Answer: The reliability of a system comes from the following influences:
Hardware reliability : The hardware components should be good enough
in order to function the system for a long time.
Software reliability : How likely is it that a software component will pro-
duce an incorrect output? Software should be tested thoroughly to en-
hance reliability.
Operator reliability : Operator also is an important component in the
entire system. Mistakes made by an operator may produce wrong result.

Q.5.3.2.2 What do you mean by system requirements?
Answer: Before we design the system, we need to understand the re-
quirements of the proposed system. There are three main types of re-
quirement.
1. Abstract functional requirements: It specifies the basic functions that
the system must provide. All these functions are defined at an abstract
level.
2. System properties: Here we specify non-functional emergent system
properties such as availability, performance and safety.
3. Characteristics that the system must not exhibit : Sometimes it is re-
quired to specify what the system must not do.

Q.5.3.2.3 What is system design? Discuss steps involved in it.
Answer: The objective of system design is to provide functionalities in
the system. It requires allocating tasks to the components. Inportant
tasks to achieve the objectives are mentined below:
i. Partitioning system: One needs to analyse the requirements and or-
ganise them into groups.
ii. Formation of sub-systems: We identify sub-systems that can individ-
ually or collectively meet the requirements.
iii. Assign requirements to sub-systems: We map now requirements to
the sub- systems. In many cases, there is no clean match between re-
quirements partitions and identified sub-systems.
iv. Specifying sub-system functionality : We specify the specific functions
provided by each sub-system.
v. Defining interfaces: We then define the interfaces that are provided

8



Different Systems

and required by each sub-system.

Q.5.3.2.4 What do mean by a legacy system?
Answer: A legacy system, in the context of computing, refers to outdated
computer systems, programming languages or application software that
are used instead of available upgraded versions.
Legacy systems also may be associated with terminology or processes
that are no longer applicable to current contexts. Thus, it creates confu-
sion. In theory, it would be great to be able to have an immediate access
to use the most advanced technology. But in reality, most organizations
have legacy systems to some extent. A legacy system may be problem-
atic, due to compatibility issues, obsoletion or lack of security support.

Q.5.3.2.5 Present a layered model of a legacy system.
Answer: A layerd legacy system may be viewed as a 3-layer system,
where the topmost layer consists of business processes. Application layer
is kept in the middle. We place support software as the bottom layer.

Q.5.3.2.6 Discuss methods of improving reliability of a system.
Answer: We discuss here three approaches to enhance reliability of a
system.
Fault avoidance: Some development techniques are used that either min-
imise the pos- sibility of mistakes and/or that trap mistakes before they
result in the introduction of system faults.
Fault detection and removal : We apply verification and validation tech-
niques that increase the chances that faults will be detected and removed
before the system is used.
Fault tolerance: We use some techniques that ensure that faults in a
system do not result in system errors or that ensure that system errors
do not result in system failures.

Q.5.3.2.7 Elaborate the idea of systems engineering. Discuss different
phases of systems engineering process.
Answer: Systems engineering is defined collectively as the activity of
specifying, designing, implementing, validating, deploying and maintain-
ing systems. Systems engineers are not just concerned with software
development but also with hardware and the system’s interactions with
users and its environment.
Phases of software engineering are: i. Requirements definition, ii. Sys-
tem design, iii. System modelling, iv. Sub-system development, v. Sys-

9



Different Systems

tem integration, vi. System installation, vii. System evolution, viii.
System decommissioning.
We provide here some ideas about each of these phases.
i. Requirements definition: It specifies what the system should do, i.e.,
its functions. It also includes its essential and desirable system proper-
ties.
ii. System design: It is concerned with how the system functionality is
to be provided by the components of the system.
iii. System modelling : It refers to a set of components and relationships
between these components.
iv. Sub-system development : The sub-systems identified during system
design phase are implemented.
v. System integration: In this phase, the developed sub-systems are put
together to make up a complete system.
vi. System installation: The developed system is deployed for use at the
client’s place.
vii. System evolution: During the life of a system, it is changed to cor-
rect errors in the original system requirements and to implement new
requirements that have emerged.
viii. System decommissioning : The system is taken out of service after
the end of its useful operational lifetime.

Q.5.3.2.8 What is system dependability? Discuss different dimensions
of dependability.
Answer: Dependability of a system means systems trustworthiness. Trust-
worthiness essentially means the degree of user confidence that the sys-
tem will operate as they expect and that the system will not fail in normal
use. It has many dimensions such as availability, reliability, safety, and
security. We elaborate these dimensions in the following.
Availability : It refers to the ability of the system to deliver services when
requested.
Reliability : It means that the system is able to deliver services as speci-
fied.
Safety : It is the ability of the system to operate without catastrophic
failure.
Security : The ability of the system to protect itself against accidental or
deliberate intrusion.

10



Software Processes

3 Software Processes

Q.5.3.3.1 Which of the following is an example of software process model?
i. A data flow or activity model, ii. A work flow model, iii. i and ii, iv.
None of the above
Answer: iii

Q.5.3.3.2 Name some fundamental activities in software processes.
Answer: There are different types of software. Hence, there exist differ-
ent processes. Most of the software processes have the following activi-
ties:
Software specification: The functionality of the software and constraints
on its operation together define the software specification. We need to
define it before engineering the software.
Software design and implementation: This is basically the production
phase of a software.
Software validation: The software must be checked to ensure that it
does what the customer wants. Software evolution: The software must
be changed as the requirements of the customer change.

Q.5.3.3.3 Name a few software process models.
Answer: Some popular process models are mentioned below:
The waterfall model : This takes the fundamental process activities of
specifi- cation, development, validation and evolution and represents
them as separate proess phases such as requirements specification, soft-
ware design, implementation, testing and so on.
Evolutionary development : This approach interleaves the activities of
specification, development and validation. An initial system is rapidly
developed from abstract specifications. This is then refined with cus-
tomer input to produce a system that satisfies the customer’s needs.
Component-based software engineering : This approach is based on the
existence of a significant number of reusable components. The system
development process focuses on integrating these components into a sys-
tem rather than developing them from scratch.

Q.5.3.3.4 Give the reasons for the failure of water fall model.
Answer: Some reasons for the failure of water fall model are stated be-
low:

13



Software Processes

- There are difficulties for customers to state all the requirements explic-
itly.
- Customers need more patience as the working product reaches only at
the deployment phase.
- Real project rarely follow sequential flow. Iterations are made indirect
manner.

Q.5.3.3.5 What are the advantages of water fall model?
Answer: Some advantages of water fall model are given below.
- It is simple.
- Lining up resources with appropriate skills becomes easy.

Q.5.3.3.6 Name a few evolutionary process models. Write some char-
acteristics of prototyping model.
Answer: Some examples of evolutionary process models are prototyp-
ing model, spiral model, concurrent development model and incremental
model.
Prototyping model is depicted by Fig. 3.

Figure 3: Prototyping model

Important characteristics of prototyping model are given here.
- Prototype is defined as first or preliminary form using available infor-
mation.
- Prototype model is a set of general objectives for software.
- It does not identify the requirements like detailed input, output.
- It is a software engineering model of limited functionality.
- In this model, working programs are quickly produced.

Q.5.3.3.7 Compare and contrast spiral model and concurrent develop-
ment model.
Answer: Spiral model (see Fig. 4) has the following characteristics.

14



Software Processes

- Spiral model is a risk driven process model.
- It is used for generating the software projects.
- In spiral model, an alternate solution is provided if the risk is found in
the risk analysis.
- It is a combination of prototype and sequential model or waterfall
model.
- In one iteration all activities are done for a large project.

Figure 4: Spiral model

Concurrent development model (see Fig. 5) comes with the following
characteristics.
- The concurrent development model, sometimes called concurrent engi-
neering.
- It allows a software team to represent iterative and concurrent elements
of any of the process model.

15


