1. Number Systems

Q.2.1.1.1 Write a note on positional number system.

Answer: Let $\underbrace{d_{n-1} d_{n-2} d_{n-3}}_{\text {integer part }} \ldots d_{0} \underbrace{\underbrace{d_{-1} d_{-2} \ldots d_{-m}}_{\text {fractional part }}}_{\text {radix point }}$ be a number in a positional system. Also let r be the base of the number system. It is also called the radix of the number system.
This number can be converted into the equivalent decimal number using the following formula.
$d_{n-1} r^{n-1}+d_{n-2} r^{n-2}+\cdots+d_{0} r^{n}+d_{-1} r^{-1}+d_{-2} r^{-2}+\cdots+d_{-m} r^{-m}(1)$ The number system is positional, since every position has a unique weight. For example, $(n-1)^{t h}$ digit d_{n-1} has weight r^{n-1} and $m^{t h}$ digit $\left(d_{-m}\right)$ after radix point has weight r^{-m}. We require r symbols to represent every number in the system.
Q.2.1.1.2 Convert (109) ${ }_{10}$ into (i) binary, (ii) octal, (iii) hexadecimal numbers, where $(n)_{r}$ represents number n in system with radix r.
Answer: (i) The equivalent number in binary system is $=(1101101)_{2}$.

2	109		
2	54	1	
2	27	0	
2	13	1	
2	6	1	
2	3	0	
2	1	1	
	0	1	\uparrow

Symbol \uparrow indicates the fact that the remainders are collected from bottom to top.
(ii) The equivalent number in octal system is $=(155)_{8}$.

8	109		
8	13	5	
8	1	5	
	0	1	\uparrow

(iii) The equivalent number in hexadecimal system is $=(6 \mathrm{D})_{16}$.

16	109		
16	6	13	
	0	6	\uparrow

Q.2.1.1.3 Convert (0.6875) ${ }_{10}$ into (i) binary, (ii) octal, (iii) hexadecimal numbers.
Answer: (i) $0.6875 \times 2=1.3750 \rightarrow 1$ (whole part)
$0.3750 \times 2=0.7500 \rightarrow 0$
$0.7500 \times 2=1.5000 \rightarrow 1$
$0.5000 \times 2=1.0000 \rightarrow 1$
Hence,
$1=a_{-1} \downarrow$
$0=a_{-2}$
$1=a_{-3}$
$1=a_{-4}$
\downarrow indicates the fact that the remainders are collected from top to bottom.
Therefore, $(0.6875)_{10}=(0.1011)_{2}$
(ii) $0.6875 \times 8=5.5000 \rightarrow 5$ (whole part)
$0.5000 \times 8=4.0000 \rightarrow 4$
Hence,
$5=a_{-1} \downarrow$
$4=a_{-2}$
Therefore, $(0.6875)_{10}=(0.54)_{8}$
(iii) $0.6875 \times 16=11.0000 \rightarrow 11$ (whole part)

Hence,
$11=\mathrm{B}=a_{-1} \downarrow$
Therefore, $(0.6875)_{10}=(0 . B)_{16}$
Q.2.1.1.4 Convert the following binary number into octal and hexadecimal numbers using digit-wise conversion: 10110001101011.111100000110 Answer: Each octal digit can be represented by three binary digits, since $2^{3}=8$.
Binary \rightarrow Octal conversion:

Therefore, $(10110001101011.111100000110)_{2}=(26153.7406)_{8}$
Again, $2^{4}=16$. Thus, four binary bits are required to represent a hexadecimal digit.
Binary \rightarrow Hexadecimal conversion:
$\underbrace{10}_{2} \underbrace{1100}_{C} \underbrace{0110}_{6} \underbrace{1011}_{B} \cdot \underbrace{1111}_{F} \underbrace{0000}_{0} \underbrace{0110}_{6}$
Therefore, $(10110001101011.111100000110)_{2}=(2 \mathrm{C} 6 \mathrm{~B} \cdot \mathrm{~F} 06)_{16}$.
Q.2.1.1.5 Find 2's complement of (i) $(101100)_{2}$, (ii) $(0.0110)_{2}$.

Answer: The r 's complement of a positive number N in base r having n digits in the integer part is defined as follows:
$= \begin{cases}r^{n}-N & N \neq 0 \\ 0, & N=0\end{cases}$
(i) 2's complement of $(101100)_{2}=\left(2^{6}\right)_{10}-(101100)_{2}$
$=(1000000-101100)_{2}=(010100)_{2}$
(ii) 2's complement of $(0.0110)_{2}=\left(2^{0}\right)_{10}-(0.0110)_{2}$ $=(1-0.0110)_{2}=(0.1010)_{2}$.
The number of digits in the integer part of $(0.0110)_{2}$ is 0 .
Q.2.1.1.6 Obtain 2's complement of $(1101.01)_{2}$.

Answer: Here, base $r=2$, and the number of digits in the integer part $n=4$. Thus, 2's complement of $(1101.01)_{2}$
$=\left(2^{4}\right)_{10}-(1101.01)_{2}$, since there are 4 digits in the integer part
$=(10000)_{2}-(1101.01)_{2}=(10000.00)_{2}-(1101.01)_{2}=(10.11)_{2}$
Q.2.1.1.7 Find 9's complement of (i) $(52520)_{10}$, (ii) $(0.3267)_{10}$.

Answer: The $(r-1)$'s complement of a positive number in base r having n digits in the integer part is defined as follows:
$= \begin{cases}r^{n}-r^{-m}-N & N \neq 0 \\ 0, & N=0\end{cases}$
where, m is the number of digits in the fractional part of N.
(i) In this case, there is no fractional part. So, $10^{-m}=10^{-0}=1$.

Hence, 9 's complement of $(52520)_{10}=\left(10^{5}-1-52520\right)=99999-52520$ $=47479$.
(ii) In this case, there is no integer part. So, $10^{n}=10^{0}=1$.

Hence, 9's complement of $(0.3267)_{10}=\left(1-10^{-4}-0.3267\right)$
$=0.9999-0.3267=0.6732$.
Q.2.1.1.8 Obtain 9's complement of (6108.02) ${ }_{10}$.

Answer: Here, base $r=10$. The number of digits in the integer part is $n=4$, and the number of digits in the fractional part is $m=2$.
Hence, the 9's complement of $(6108.02)_{10}$
$=10^{4}-10^{-2}-6108.02=10000-0.01-6108.02=3891.97$.

2. Binary Codes

Q.2.1.2.1 Give a few examples of a non-weighted code.

Answer: Non-weighted codes are not positionally weighted. In other words, codes that are not assigned with any weight to each digit position. Excess-3 and Gray codes are non-weighted.
Q.2.1.2.2 Represent number 127 using 8421 BCD and Excess-3 codes. Answer: The 8421 BCD code is a straight assignment of the binary equivalent. Here weights are assigned to the binary bits according to their positions. Excess-3 code of a digit is obtained by adding 0011 to the 8421 BCD code of the digit. The 8421 BCD and Excess- 3 encoding of 127 are 000100100111 and 010001011010 respectively.
Q.2.1.2.3 Add 98.90 and 56.392 using 8421 BCD code.

Answer: First we perform addition manually, and then we match the results obtained in both the cases.
98.900
56.392
155.292

Now we perform addition using 8421 BCD code.

Q.2.1.2.4 Subtract $98.90-56.392$ using i. 9's complement method, ii. BCD code.
Answer: First we perform subtraction manually.
98.900
56.392
42.508

Now we perform subtraction by 9's complement method.

```
    98.900
    43.607 (9's complement of 56.392)
    ------ (Add)
142.507 (There is end carry)
        1
--------- (Add end carry)
    42.508
```

The result matches with the result of manual manual subtraction method. Now we perform subtraction in BCD code.

```
1001 1000 . 1001 0000 0000 (98.900 in 8421 BCD)
0101 0110 . 0011 1001 0010 (56.392 in 8421 BCD)
0100 0010 .0101 0110 1110 (After subtracting)
        0 1 1 0 0 1 1 0 ~ ( S u b t r a c t ~ 0 1 1 0 , ~ w h e r e ~ b o r r o w s ~ a r e ~ p r e s e n t ) ~
0100 0010.0101 0000 1000 (Correct sum - after subtraction)
    4 2 % . 5 0 % 8
```

Q.2.1.2.5 Subtract $98.90-56.392$ using i. 9's complement method, ii. 9's complement method in 8421 BCD code.
Answer: i. We compute the substraction using 9's complement method.

```
    98.900
    43.607 (9's complement of 56.392)
    ------ (Add)
142.507 (There is end carry)
    1
        (Add end carry)
    42.508
```

ii. We perform subtraction in 8421 BCD code using 9's complement method.

Q.2.1.2.6 Subtract $98.90-56.392$ using i. 10's complement method, ii. 10's complement method in 8421 BCD code.
Answer: i. We compute the substraction using 10's complement method.

```
    98.900
    43.608 (10's complement of 56.392)
    ------ (Add)
142.508 (There is end carry)
Answer is = 42.508 (Ignore carry)
```

ii. We perform subtraction in 8421 BCD code using 10 's complement method.

Q.2.1.2.7 Subtract $56.392-98.433$ using (i) 9's complement method in 8421 BCD code, (ii) 10's complement method in 8421 BCD code.

3. Boolean Algebra

Q.2.1.3.1 What is Boolean algebra?

Answer: Boolean algebra is an algebraic structure defined on a set of elements B, together with two binary operators + and . having the following postulates.

1. Closure properties with respect to operators + and .
2. (i) An identity element with respect to + , designated by $0: x+0=$ $0+x=x$
(ii) An identity element with respect to ., designated by 1: $x .1=1 . x=x$ 3. Commutative properties (i) $x+y=y+x$, (ii) $x \cdot y=y \cdot x$
3. Distributive properties (i) $x .(y+z)=(x . y)+(x . z)$, (ii) $x+(y . z)=$ $(x+y) \cdot(x+z)$
4. For every element $x \in B$, there exists an element $x^{\prime} \in B$, called the complement of x, such that (i) $x+x^{\prime}=1$, and (ii) $x \cdot x^{\prime}=0$
5. There exists atleast two elements $x, y \in B$ such that $x \neq y$
Q.2.1.3.2 Define two-valued Boolean algebra.

Answer: A two-valued Boolean algebra is defined on a set of two elements, $B=\{0,1\}$, with rules for the two binary operators + and . as shown in the following operator tables:

x	y	$x . y$
0	0	0
0	1	0
1	0	0
1	1	1

x	y	$x+y$
0	0	0
0	1	1
1	0	1
1	1	1

x	x^{\prime}
0	1
1	0

These rules are exactly the same as the AND, OR, and NOT operations, respectively. The postulates stated in Q.2.1.3.1 are valid for the set $B=\{0,1\}$, and the binary operations as defined in the above tables.
Q.2.1.3.3 Prove the result: $x+x=x$, for a Boolean variable x.

Answer:

$$
\begin{aligned}
x+x & =(x+x) \cdot 1[2(\mathrm{ii}), \mathrm{Q} \cdot 2 \cdot 1 \cdot 3 \cdot 1] \\
& =(x+x)\left(x+x^{\prime}\right)[5(\mathrm{i}), \mathrm{Q} \cdot 2 \cdot 1 \cdot 3 \cdot 1] \\
& =x+x x^{\prime}[4(\mathrm{ii}), \mathrm{Q} \cdot 2 \cdot 1 \cdot 3 \cdot 1] \\
& =x+0[5(\mathrm{ii}), \mathrm{Q} \cdot 2 \cdot 1 \cdot 3 \cdot 1] \\
& =x[2(\mathrm{i}), \mathrm{Q} \cdot 2 \cdot 1 \cdot 3.1]
\end{aligned}
$$

Q.2.1.3.4 Show that $x .0=0$.

Answer:

$$
\begin{aligned}
x .0 & =x .0+0[2(\mathrm{i}), \mathrm{Q} \cdot 2 \cdot 1.3 .1] \\
& =x \cdot 0+x x^{\prime}[5(\mathrm{ii}), \mathrm{Q} \cdot 2 \cdot 1.3 .1] \\
& =x\left(0+x^{\prime}\right)[4(\mathrm{ii}), \mathrm{Q} \cdot 2 \cdot 1.3 .1] \\
& =x x^{\prime}[2(\mathrm{i}), \mathrm{Q} \cdot 2 \cdot 1.3 .1] \\
& =0[5(\mathrm{ii}), \mathrm{Q} \cdot 2 \cdot 1.3 .1]
\end{aligned}
$$

Q.2.1.3.5 Prove the absorption law: $x(x+y)=x$.

Answer:

$$
\begin{aligned}
x(x+y) & =(x+0)(x+y)[2(\mathrm{i}), \mathrm{Q} \cdot 2 \cdot 1.3 .1] \\
& =x+(0 . y)[4(\mathrm{ii}), \mathrm{Q} \cdot 2 \cdot 1 \cdot 3 \cdot 1] \\
& =x+(y \cdot 0)[3(\mathrm{ii}), \mathrm{Q} \cdot 2 \cdot 1 \cdot 3 \cdot 1] \\
& =x+0[\mathrm{Q} \cdot 2 \cdot 1.3 .4] \\
& =x[2(\mathrm{ii}), \mathrm{Q} \cdot 2 \cdot 1.3 .1]]
\end{aligned}
$$

Q.2.1.3.6 Show that $\left(x^{\prime}\right)^{\prime}=x$.

Answer: We have $x+x^{\prime}=1$ and $x \cdot x^{\prime}=0$ [5(i), 5(ii), Q.2.1.3.1], where x^{\prime} is the complement of x. Similarly, complement of x^{\prime} is x and is also $\left(x^{\prime}\right)^{\prime}$. Since the complement is unique, we have $\left(x^{\prime}\right)^{\prime}=x$.
Q.2.1.3.7 Prove the associative law: $x+(y+z)=(x+y)+z$. Answer: We shall prove it using truth table method.

$x y z$	$(x+y)$	$(x+y)+z$	$(y+z)$	$x+(y+z)$
000	0	0	0	0
001	0	1	1	1
010	1	1	1	1
011	1	0	0	0
100	1	1	0	1
101	1	0	1	0
110	0	0	1	0
111	0	1	0	1

Above table shows that the columns corresponding to $x+(y+z)$ and $(x+y)+z$ are the same. This proves the result.
Q.2.1.3.8 Prove that $(x+y)^{\prime}=x^{\prime} y^{\prime}$ [De Morgan's law]

Answer: The law can be proved using truth table method.

x	y	$x+y$	$(x+y)^{\prime}$	x^{\prime}	y^{\prime}	$x^{\prime} y^{\prime}$
0	0	0	1	1	1	1
0	1	1	0	1	0	0
1	0	1	0	0	1	0
1	1	1	0	0	0	0

The values under the columns $(x+y)^{\prime}$ and $x^{\prime} y^{\prime}$ are the same for each combination of x and y.
Q.2.1.3.9 There are $2^{2^{n}}$ distinct functions for n Boolean variables - Prove it.
Answer: For n Boolean variables, there are 2^{n} tuples (combinations).
For example, there are 2^{2} combinations, for 2 variables as given here: $\{(0,0),(0,1),(1,0),(1,1)\}$. For each combination, the Boolean function assumes one of possible 2 values. Thus, using multiplication rule, the number of functions is $=2 \times 2 \times \cdots \times 2\left(2^{n}\right.$ times $)=2^{2^{n}}$.
Q.2.1.3.10 List all possible functions of two Boolean variables.

Answer: There are $2^{2^{n}}=2^{2^{2}}=16$ distinct functions. The truth table of all the functions are given below.

x	y	f_{0}	f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}	f_{8}	f_{9}	f_{10}	f_{11}	\ldots	f_{15}
0	0	0	0	0	0	0	0	0	0	1	1	1	1	\ldots	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	\ldots	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	\ldots	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	\ldots	1

From the above table, we get algebraic expression for all the functions.
For example, $f_{0}(x, y)=0, f_{15}(x, y)=1, f_{1}(x, y)=x y, f_{2}(x, y)=x y^{\prime}$,
$f_{3}(x, y)=x y^{\prime}+x y=x$, etc.
Q.2.1.3.11 Simplify the Boolean functions: i. $x y+x^{\prime} z+y z$, ii. $x+x^{\prime} y$.

Answer: i. $x y+x^{\prime} z+y z=x y+x^{\prime} z+y z\left(x+x^{\prime}\right)=x y+x^{\prime} z+x y z+x^{\prime} y z$ $=x y(1+z)+x^{\prime} z(1+y)=x y+x^{\prime} z$
ii. $x+x^{\prime} y=\left(x+x^{\prime}\right)(x+y)=1 .(x+y)=x+y$
Q.2.1.3.12 Find the complement of the function $f_{1}(x, y)=x^{\prime} y z^{\prime}+x^{\prime} y^{\prime} z$. Answer: $f_{1}^{\prime}=\left(x^{\prime} y z^{\prime}+x^{\prime} y^{\prime} z\right)^{\prime}=\left(x^{\prime} y z^{\prime}\right)^{\prime}\left(x^{\prime} y^{\prime} z\right)^{\prime}$ [De Morgan's law] $=\left(x+y^{\prime}+z\right)\left(x+y+z^{\prime}\right)$ [De Morgan's law]
Q.2.1.3.13 Using the principle of duality, find the complement of

