1. Number Systems

Q.2.1.1.1 Write a note on positional number system.

Answer: Let $\underbrace{d_{n-1}d_{n-2}d_{n-3}}_{integer \ part} \dots d_0 \underbrace{\cdot}_{radix \ point} \underbrace{d_{-1}d_{-2}\dots d_{-m}}_{fractional \ part}$ be a number

in a positional system. Also let r be the base of the number system. It is also called the *radix* of the number system.

This number can be converted into the equivalent decimal number using the following formula.

 $d_{n-1}r^{n-1} + d_{n-2}r^{n-2} + \dots + d_0r^n + d_{-1}r^{-1} + d_{-2}r^{-2} + \dots + d_{-m}r^{-m}$ (1) The number system is positional, since every position has a unique weight. For example, $(n-1)^{th}$ digit d_{n-1} has weight r^{n-1} and m^{th} digit (d_{-m}) after radix point has weight r^{-m} . We require r symbols to represent every number in the system.

Q.2.1.1.2 Convert $(109)_{10}$ into (i) binary, (ii) octal, (iii) hexadecimal numbers, where $(n)_r$ represents number n in system with radix r. Answer: (i) The equivalent number in binary system is = $(1101101)_2$.

2	109		
2	54	1	
2	27	0	
2	13	1	
2	6	1	
2	3	0	
2	1	1	
	0	1	\uparrow

Symbol \uparrow indicates the fact that the remainders are collected from bottom to top.

(ii) The equivalent number in octal system is $= (155)_8$.

8	109		
8	13	5	
8	1	5	
	0	1	\uparrow

(iii) The equivalent number in hexadecimal system is $= (6D)_{16}$.

16	109		
16	6	13	
	0	6	\uparrow

Q.2.1.1.3 Convert $(0.6875)_{10}$ into (i) binary, (ii) octal, (iii) hexadecimal numbers.

Answer: (i) $0.6875 \times 2 = 1.3750 \rightarrow 1$ (whole part) $0.3750 \times 2 = 0.7500 \rightarrow 0$ $0.7500 \times 2 = 1.5000 \rightarrow 1$ $0.5000 \times 2 = 1.0000 \rightarrow 1$ Hence, $1 = a_{-1} \downarrow$ $0 = a_{-2}$ $1 = a_{-3}$ $1 = a_{-4}$ \downarrow indicates the fact that the remainders are collected from top to bottom.

Therefore, $(0.6875)_{10} = (0.1011)_2$

(ii) $0.6875 \times 8 = 5.5000 \rightarrow 5$ (whole part) $0.5000 \times 8 = 4.0000 \rightarrow 4$ Hence, $5 = a_{-1} \downarrow$ $4 = a_{-2}$ Therefore, $(0.6875)_{10} = (0.54)_8$ (iii) $0.6875 \times 16 = 11.0000 \rightarrow 11$ (whole part) Hence, $11 = B = a_{-1} \downarrow$ Therefore, $(0.6875)_{10} = (0.B)_{16}$

Q.2.1.1.4 Convert the following binary number into octal and hexadecimal numbers using digit-wise conversion: 10110001101011.111100000110 Answer: Each octal digit can be represented by three binary digits, since $2^3 = 8$.

 $\begin{array}{l} Binary \to Octal \text{ conversion:} \\ \underbrace{10 \quad 110 \quad 001 \quad 101 \quad 011}_{2 \quad 6 \quad 1 \quad 5 \quad 3} \quad \underbrace{111 \quad 100 \quad 000 \quad 110}_{7 \quad 4 \quad 0 \quad 6 \quad 6} \\ Therefore, \ (10110001101011.111100000110)_2 = (26153.7406)_8 \\ Again, \ 2^4 = 16. \ Thus, \ four \ binary \ bits \ are \ required \ to \ represent \ a \ hexadecimal \ digit. \end{array}$

 $Binary \rightarrow Hexadecimal$ conversion:

 $\underbrace{10}_{2} \underbrace{1100}_{C} \underbrace{0110}_{6} \underbrace{1011}_{B} \cdot \underbrace{1111}_{F} \underbrace{0000}_{0} \underbrace{0110}_{6}$ Therefore, $(10110001101011.111100000110)_{2} = (2C6B.F06)_{16}.$

Q.2.1.1.5 Find 2's complement of (i) $(101100)_2$, (ii) $(0.0110)_2$. Answer: The *r*'s complement of a positive number *N* in base *r* having *n* digits in the integer part is defined as follows:

 $= \begin{cases} r^n - N & N \neq 0 \\ 0, & N = 0 \end{cases}$ (i) 2's complement of $(101100)_2 = (2^6)_{10} - (101100)_2$ $= (1000000 - 101100)_2 = (010100)_2$ (ii) 2's complement of $(0.0110)_2 = (2^0)_{10} - (0.0110)_2$ $= (1 - 0.0110)_2 = (0.1010)_2.$ The number of digits in the integer part of $(0.0110)_2$ is 0.

Q.2.1.1.6 Obtain 2's complement of $(1101.01)_2$.

Answer: Here, base r = 2, and the number of digits in the integer part n = 4. Thus, 2's complement of $(1101.01)_2$

 $= (2^4)_{10} - (1101.01)_2$, since there are 4 digits in the integer part

 $= (10000)_2 - (1101.01)_2 = (10000.00)_2 - (1101.01)_2 = (10.11)_2$

Q.2.1.1.7 Find 9's complement of (i) $(52520)_{10}$, (ii) $(0.3267)_{10}$. Answer: The (r-1)'s complement of a positive number in base r having n digits in the integer part is defined as follows:

 $= \begin{cases} r^n - r^{-m} - N & N \neq 0\\ 0, & N = 0 \end{cases}$

where, *m* is the number of digits in the fractional part of *N*. (i) In this case, there is no fractional part. So, $10^{-m} = 10^{-0} = 1$.

Hence, 9's complement of $(52520)_{10} = (10^5 - 1 - 52520) = 99999 - 52520 = 47479.$

(ii) In this case, there is no integer part. So, $10^n = 10^0 = 1$. Hence, 9's complement of $(0.3267)_{10} = (1 - 10^{-4} - 0.3267) = 0.9999 - 0.3267 = 0.6732$.

Q.2.1.1.8 Obtain 9's complement of $(6108.02)_{10}$. Answer: Here, base r = 10. The number of digits in the integer part is n = 4, and the number of digits in the fractional part is m = 2. Hence, the 9's complement of $(6108.02)_{10}$ $= 10^4 - 10^{-2} - 6108.02 = 10000 - 0.01 - 6108.02 = 3891.97$.

2. Binary Codes

Q.2.1.2.1 Give a few examples of a non-weighted code.

Answer: Non-weighted codes are not positionally weighted. In other words, codes that are not assigned with any weight to each digit position. Excess-3 and Gray codes are non-weighted.

Q.2.1.2.2 Represent number 127 using 8421 BCD and Excess-3 codes. Answer: The 8421 BCD code is a straight assignment of the binary equivalent. Here weights are assigned to the binary bits according to their positions. Excess-3 code of a digit is obtained by adding 0011 to the 8421 BCD code of the digit. The 8421 BCD and Excess-3 encoding of 127 are 0001 0010 0111 and 0100 0101 1010 respectively.

Q.2.1.2.3 Add 98.90 and 56.392 using 8421 BCD code.

Answer: First we perform addition manually, and then we match the results obtained in both the cases.

98.900 56.392 -----155.292

Now we perform addition using 8421 BCD code.

	1001	1	1000		.1001	0000	0000	(98.900 in 8421 BCD)
	0101	(0110		.0011	1001	0010	(56.392 in 8421 BCD)
	1110	1	1110		.1100	1001	0010	(After adding)
	0110	(0110		.0110			(Add 0110 to illegal codes)
1	0100	1 (0100	1	.0010	1001	0010	(Propagate end carry)
1	1		1		.0010	1001	0010	(Add carry)
1	0101	(0101		.0010	1001	0010	(Correct sum - after adding carry)
1	5		5		.2	9	2	

Q.2.1.2.4 Subtract 98.90-56.392 using i. 9's complement method, ii. BCD code.

Answer: First we perform subtraction manually.

98.900 56.392 -----42.508

Now we perform subtraction by 9's complement method.

98.900 43.607 (9's complement of 56.392) ----- (Add) 1 42.507 (There is end carry) 1 ----- (Add end carry) 42.508

The result matches with the result of manual manual subtraction method. Now we perform subtraction in BCD code.

1001	1000	.1001	0000	0000	(98.900 in 8421 BCD)
0101	0110	.0011	1001	0010	(56.392 in 8421 BCD)
0100	0010	.0101	0110	1110	(After subtracting)
			0110	0110	(Subtract 0110, where borrows are present)
0100	0010	.0101	0000	1000	(Correct sum - after subtraction)
4	2	.5	0	8	

Q.2.1.2.5 Subtract 98.90 - 56.392 using i. 9's complement method, ii. 9's complement method in 8421 BCD code. Answer: i. We compute the substraction using 9's complement method.

98.900 43.607 (9's complement of 56.392) ----- (Add) 1 42.507 (There is end carry) 1 ----- (Add end carry) 42.508

ii. We perform subtraction in 8421 BCD code using 9's complement method.

1001 0100	1000 0011	.1001 .0110	0000 0000	0000 0111	(98.900 in 8421 BCD) (43.607 in 8421 BCD)
1101 0110	1011 0110	.1111 .0110	0000	0111	(After adding) (Add 0110, where code is illegal)
1 0011 1	1 0001 1	1 .0101	0000	0111	
1 0100	0010	.0101	0000	0111	(Propagate carry) (Add end carry)
0100 4	0010 2	.0101 .5	0000 0	1000 8	(Check the subtraction)

Q.2.1.2.6 Subtract 98.90 - 56.392 using i. 10's complement method, ii. 10's complement method in 8421 BCD code.

Answer: i. We compute the substraction using 10's complement method.

98.900	
43.608	(10's complement of 56.392)
	(Add)
1 42.508	(There is end carry)
Answer is = 42.508	(Ignore carry)

ii. We perform subtraction in 8421 BCD code using 10's complement method.

1001	100	0	.1001	0000	0000	(98.9	900 in	n 842	21 BC	D)		
0100	001	1	.0110	0000	1000	(43.6	508 iı	n 842	21 BC	D)		
1101	101	1	.1111	0000	1000	(Afte	er ado	ding))			
0110	011	0	.0110			(Add	0110	, whe	ere c	ode is	s ill	egal)
1 001:	 1 1 00	 01 1	.0101	0000	1000							
-	1	1										
						(Prop	pagate	e cai	ry)			
1 0100	00 C	10	.0101	0000	1000							
Answei	r is =	010	00 00	010	.0101	0000	1000	(Iį	gnore	carry	7)	
		4	4	2	.5	0	8					

Q.2.1.2.7 Subtract 56.392 – 98.433 using (i) 9's complement method in 8421 BCD code, (ii) 10's complement method in 8421 BCD code.

3. Boolean Algebra

Q.2.1.3.1 What is Boolean algebra?

Answer: Boolean algebra is an algebraic structure defined on a set of elements B, together with two binary operators + and . having the following postulates.

1. Closure properties with respect to operators + and .

2. (i) An identity element with respect to +, designated by 0: x + 0 = 0 + x = x

(ii) An identity element with respect to . , designated by 1: x.1=1.x=x

3. Commutative properties (i) x + y = y + x, (ii) $x \cdot y = y \cdot x$

4. Distributive properties (i) x.(y+z) = (x.y) + (x.z), (ii) x + (y.z) = (x+y).(x+z)

5. For every element $x \in B$, there exists an element $x' \in B$, called the complement of x, such that (i) x + x' = 1, and (ii) $x \cdot x' = 0$

6. There exists at least two elements $x,y\in B$ such that $x\neq y$

Q.2.1.3.2 Define two-valued Boolean algebra.

Answer: A two-valued Boolean algebra is defined on a set of two elements, $B = \{0, 1\}$, with rules for the two binary operators + and . as shown in the following operator tables:

x	y	x.y	x	y	x + y
0	0	0	0	0	0
0	1	0	0	1	1
1	0	0	1	0	1
1	1	1	1	1	1

These rules are exactly the same as the AND, OR, and NOT operations, respectively. The postulates stated in Q.2.1.3.1 are valid for the set $B = \{0, 1\}$, and the binary operations as defined in the above tables.

Q.2.1.3.3 Prove the result: x + x = x, for a Boolean variable x. Answer:

$$\begin{aligned} x + x &= (x + x).1 \ [2(\text{ii}), \text{ Q.2.1.3.1}] \\ &= (x + x)(x + x') \ [5(\text{i}), \text{ Q.2.1.3.1}] \\ &= x + xx' \ [4(\text{ii}), \text{ Q.2.1.3.1}] \\ &= x + 0 \ [5(\text{ii}), \text{ Q.2.1.3.1}] \\ &= x \ [2(\text{i}), \text{ Q.2.1.3.1}] \end{aligned}$$

Q.2.1.3.4 Show that x.0 = 0. Answer:

 $\begin{aligned} x.0 &= x.0 + 0 \ [2(i), \ Q.2.1.3.1] \\ &= x.0 + xx' \ [5(ii), \ Q.2.1.3.1] \\ &= x(0 + x') \ [4(ii), \ Q.2.1.3.1] \\ &= xx' \ [2(i), \ Q.2.1.3.1] \\ &= 0 \ [5(ii), \ Q.2.1.3.1] \end{aligned}$

Q.2.1.3.5 Prove the absorption law: x(x + y) = x. Answer:

$$\begin{aligned} x(x+y) &= (x+0)(x+y) \ [2(i), \ Q.2.1.3.1] \\ &= x + (0.y) \ [4(ii), \ Q.2.1.3.1] \\ &= x + (y.0) \ [3(ii), \ Q.2.1.3.1] \\ &= x + 0 \ [Q.2.1.3.4] \\ &= x \ [2(ii), \ Q.2.1.3.1]] \end{aligned}$$

Q.2.1.3.6 Show that (x')' = x.

Answer: We have x + x' = 1 and $x \cdot x' = 0$ [5(i), 5(ii), Q.2.1.3.1], where x' is the complement of x. Similarly, complement of x' is x and is also (x')'. Since the complement is unique, we have (x')' = x.

Q.2.1.3.7 Prove the associative law: x + (y + z) = (x + y) + z. Answer: We shall prove it using truth table method.

xyz	(x+y)	(x+y)+z	(y+z)	x + (y + z)
000	0	0	0	0
001	0	1	1	1
010	1	1	1	1
011	1	0	0	0
100	1	1	0	1
101	1	0	1	0
110	0	0	1	0
111	0	1	0	1

Above table shows that the columns corresponding to x + (y + z) and (x + y) + z are the same. This proves the result.

Q.2.1.3.8 Prove that (x + y)' = x'y' [De Morgan's law] Answer: The law can be proved using truth table method.

x	y	x+y	(x+y)'	x'	y'	x'y'
0	0	0	1	1	1	1
0	1	1	0	1	0	0
1	0	1	0	0	1	0
1	1	1	0	0	0	0

The values under the columns (x + y)' and x'y' are the same for each combination of x and y.

Q.2.1.3.9 There are 2^{2^n} distinct functions for n Boolean variables - Prove it.

Answer: For *n* Boolean variables, there are 2^n tuples (combinations). For example, there are 2^2 combinations, for 2 variables as given here: $\{(0,0), (0,1), (1,0), (1,1)\}$. For each combination, the Boolean function assumes one of possible 2 values. Thus, using multiplication rule, the number of functions is $= 2 \times 2 \times \cdots \times 2$ (2^n times) $= 2^{2^n}$.

Q.2.1.3.10 List all possible functions of two Boolean variables. Answer: There are $2^{2^n} = 2^{2^2} = 16$ distinct functions. The truth table of all the functions are given below.

x	y	f_0	f_1	f_2	f_3	f_4	f_5	f_6	f_7	f_8	f_9	f_{10}	f_{11}	 f_{15}
0	0	0	0	0	0	0	0	0	0	1	1	1	1	 1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	 1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	 1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	 1

From the above table, we get algebraic expression for all the functions. For example, $f_0(x, y) = 0$, $f_{15}(x, y) = 1$, $f_1(x, y) = xy$, $f_2(x, y) = xy'$, $f_3(x, y) = xy' + xy = x$, etc.

Q.2.1.3.11 Simplify the Boolean functions: i. xy + x'z + yz, ii. x + x'y. Answer: i. xy + x'z + yz = xy + x'z + yz(x + x') = xy + x'z + xyz + x'yz= xy(1 + z) + x'z(1 + y) = xy + x'zii. x + x'y = (x + x')(x + y) = 1.(x + y) = x + y

Q.2.1.3.12 Find the complement of the function $f_1(x, y) = x'yz' + x'y'z$. Answer: $f'_1 = (x'yz' + x'y'z)' = (x'yz')'(x'y'z)'$ [De Morgan's law] = (x + y' + z)(x + y + z') [De Morgan's law]

Q.2.1.3.13 Using the principle of duality, find the complement of