
1. Introduction

1. Introduction

Q.3.2.1.1 Explain the notion of system software.
Answer: System software is a collection of programs that bridge the gap
between the users wish to interact with the computer and the level at
which the computer is capable of operating. These programs act as inter-
mediary between users and the computer. Many a times, users’ programs
are translated by the system software into a form that computer can un-
derstand it, and programs get executed. Examples of system software
are operating system, compiler, linker, loader, assembler, interpreter and
database management system.

Q.3.2.1.2 Discuss different types of system software.
Answer: There are different types of system software as noted below.
∗ Operating system (OS): It is an interface between computer hardware
and end user. Examples are Windows 10, Mac OS X, and Ubuntu.
∗ Device driver: Drivers make it possible for all connected components
and external add-ons perform their intended tasks as directed by the OS.
Examples of devices which require drivers are mouse, keyboard, sound-
card, display card, network card and printer.
∗ Firmware: Firmware is a specific class of software that provides the
low-level control for a device’s specific hardware. Firmware can either
provide a standardized operating environment for more complex device
software, or, act as the device’s complete operating system for less com-
plex devices. Firmware is held in non-volatile memory devices such as
ROM, EPROM, EEPROM and flash memory. Firmware such as BIOS
of a personal computer may contain only basic functions of a device and
may only provide services to higher-level software.
∗ Language processors: See Q.3.2.2.3.
∗ Utilities: Refer to Q.3.2.1.5.

Q.3.2.1.3 What do you mean by semantic gap? How does it affect to
software development process?
Answer: It can be described as the gap between the task to be performed
at application level and the execution level (machine level). It has two
components: specification gap and execution gap.
Semantic gap = Specification gap + Execution gap
Specification gap refers to the gap between the task at application level

1



1. Introduction

and the program written in some language. Execution gap refers to the
gap between the program written in a language and the execution level
(machine level) of a computer.

Figure 1.1: Specification gap and execution gap

The semantic gap may result in the following issues: (i) long development
time, (ii) large development efforts for engineering a large-scale software.

Q.3.2.1.4 Fill in the blank.
A system software is a collection of programs, called —–.
Answer: system programs

Q.3.2.1.5 Classify software based on the nature of the task and goal.
Draw a hierarchy chart.
Answer: Computer software includes various computer programs, sys-
tem libraries and their associated documentation. Based on the nature
of the task and goal, computer software can be classified broadly into
application software, utility software, and system software. See Fig. 1.2.
A description about system software is given in Q.3.2.1.1.
Utility software: This type of software is designed to help to analyze,
configure, optimize or maintain a computer. Although a basic set of
utility programs is usually distributed with an operating system (OS),
and this first party utility software is often considered part of the op-
erating system, users often install replacements or additional utilities.
Those utilities may provide additional facilities to carry out tasks that
are beyond the capabilities of the operating system. Example of utility
programs are anti-virus software, firewalls, and disk utilities.
Application software: Application software (app for short) is a program
or group of programs designed for end-users. Examples of an applica-
tion include a word processor, a spreadsheet, an accounting application,

2



1. Introduction

a web browser, an email client, a media player, a file viewer, simulators,
a console game, or a photo editor.

Figure 1.2: Software hierarchy based on the nature of the task and goal

Application software is concerned with the solution of some problems; it
uses a computer as a tool and enables the end user to perform specific
and productive tasks.

Q.3.2.1.6 What is system programming? Characterize the nature of sys-
tem programming.
Answer: A system program is characterized by the fact that it is aimed at
producing system software that provides services to the computer hard-
ware, or specialized system services. Many a times, system programming
directly deals with the peripheral devices with a focus on input, process
(storage), and output.
Some characteristics of system programming include the following:
∗ Programmers are expected to know the hardware and internal behav-
ior of the computer system on which the program will run. System
programmers explore hardware properties and write software for specific
hardware.
∗ It uses a low level programming language or some programming di-
alect.

3



Language Processors

2. Language Processors

Q.3.2.2.1 What do you mean by a language translator?
Answer: It is a software which bridges an execution gap. The input
program of a language translator is a source program and the output
program is the target program. The different types of language transla-
tor are mentioned below.
◦ Assembler: A language translator whose source language is an assem-
bly language.
◦ Compiler: A language translator whose source language is a high level
language.
◦ Detranslator: A language translator which converts machine language
to an assembly level language.

Q.3.2.2.2 Write a note on interpreter.
Answer: An interpreter is a language processor which bridges an ex-
ecution gap without generating a machine language program. It is a
computer program that directly executes instructions written in a pro-
gramming or scripting language, without requiring them previously to
have been compiled into a machine language program. An interpreter
generally uses one of the following strategies to execute a program.
∗ Parse the source code and execute it directly.
∗ Translate source code into some efficient intermediate representation,
and then immediately execute the intermediate representation.
∗ Explicitly execute stored precompiled code produced by a compiler.

Q.3.2.2.3 What is a language processor? Explain the purpose of the
following language processors: preprocessor, language migratory.
Answer: It is a software which bridges a specification or execution gap.
The input program of a language processor is a source program and
the output program is the target program. Language translators (see
Q.3.2.2.1) are also a kind of language processor. We define below two
other types of language processors.
◦ Preprocessor: It is a software that accepts a source program contain-
ing directives and bridges the specification gap and produces a target
program written in a language other than machine language.
◦ Language migratory: It is a software that bridges the specification
gap between two programming languages.

7



Language Processors

Q.3.2.2.4 Give the specific names of the following softwares (language
processors) that convert a
(i) COBOL program into a C program
(ii) C++ program into a C program
(iii) C program into a C program without directives (like # define)
(iv) 8088 assembly program into a machine language program.
(v) C++ program into machine language program.
Answer: (i) language migrator, (ii) preprocessor, (iii) preprocessor, (iv)
assembler, (v) compiler.

Q.3.2.2.5 Make a comparison between problem oriented languages and
procedure oriented languages.
Answer: A problem oriented language is designed to handle a particular
class of problem. For example, COBOL was designed for business data
processing, FORTRAN for scientific calculations and GPSS for simula-
tion & modeling.
A procedure, often termed as a routine or subroutine, contains a series
of computational steps to be carried out. A given procedure might be
called at any point during a program’s execution, including by other
procedures or itself. A procedure oriented language follows structured
programming, based on the concept of the procedure call. Example of
procedure oriented language are FORTRAN, ALGOL, Pascal and C. See
Table 2.1 for a comparison between the two types of languages.

Table 2.1 Problem oriented language versus procedure oriented
language

Problem oriented language Procedure oriented language
i. very close to application domain i. independent of application domain

ii. small specification gap ii. large specification gap
iii. large execution gap iii. relatively small execution gap

iv. many times they are interpreted iv. many times they are compiled

Q.3.2.2.6 Compare and contrast translation model with interpretation
model.
Answer: We present a comparative study using Table 2.2.

8



Language Processors

Table 2.2 Comparison between translation model and interpretation
model

Translation model Interpretation model
i. translation overloaded before i. no translation overhead

the program executes the program executes
ii. program executes efficiently and faster ii. program executes slower

iii. it is advantageous if a program iii. it is advantageous if a program
does not changes frequently is modified between executions

Q.3.2.2.7 Discuss, in general, the work performed by a language pro-
cessor.
Answer: Language processing can be thought of as two-step process as
shown in Fig. 2.1:
Language processing = Analysis of source program + Synthesis of target
program.

Figure 2.1: Major phases of a language processor

Now the analysis of source language consists of the following steps:
1. Lexical analysis: It is the process of converting a sequence of charac-
ters, as stated in a computer program or web page, into a sequence of
tokens. A program that performs lexical analysis may be termed a lexer,
tokenizer, or scanner.
2. Syntax analysis: It is the process of analyzing a string of symbols,
either in natural language, computer languages or data structures, con-
forming to the rules of a formal grammar.
3. Semantic analysis: It is a process in compiler construction, usually
after parsing, to gather necessary semantic information from the source
code. It usually includes type checking, or makes sure a variable is de-
clared before use which is impossible to describe in the extended Backus-
Naur form and thus, not easily detected during parsing.

9



Assemblers

3. Assemblers

Q.3.2.3.1 Explain different entities in an assembly language program.
Answer: Assembly language program contains absolute entities, relative
entities and external entities.
Absolute entity : It is independent of the storage location. E.g., op-code,
fixed address (e.g., register).
Relative entity : It is relative to other symbolic references and can be
stated relative to the starting address of the program. E.g., symbolic
reference.
External entity : This type of entity is used in a module but not defined
within that module.

Q.3.2.3.2 Is assembly language program portable?
Answer: When a source program written in a language and that can be
compiled and run on a wide variety of computer systems is said to be
portable. An assembly language program is not portable, because it is
designed for a specific processor family. There are a number of different
assembly languages widely used today, each based on a processor fam-
ily. Some well-known processor families are Motorola 68x00, x86, SUN
Sparc, Vax, and IBM-370.

Q.3.2.3.3 State some situations, where assembly language programs be-
come useful.
Answer: In the following situations, assembly language programs become
useful.
∗ Assembly language is an ideal tool for writing embedded programs in
single-purpose devices such as telephones, air-conditioning control sys-
tems, security systems, video cards, sound cards, hard drives, modems,and
printers, because of its economical use of memory.
∗ Real-time applications dealing with simulation and hardware monitor-
ing require precise timing and responses. Programs written in assembly
language can achieve these objectives.
∗ Computer game consoles require their software to be highly optimized
for small code size and fast execution. Software require to utilize the
computer hardware to optimise speed and code size. Assembly language
programs can take full advantage of these requirements.
∗ Device drivers contain a significant amount of assembly language code.

11



Assemblers

∗ For testing architectural features of a computer, assembly language
programs become handy.

Q.3.2.3.4 State functions performed by an assembler.
Answer: Some important functions performed by assembler are given
below:
(i) It produces the object code of the given program.
(ii) It prepares a cross reference table to assist in debugging.
Cross reference table indicates the following:
For each symbol in the source program, it displays where it is defined
and where it is accessed.

Q.3.2.3.5 Explain the notion of system virtual machine.
Answer: A virtual machine has no direct correspondence to any real
hardware. The physical, ”real-world” hardware running the virtual ma-
chine is generally referred to as the ”host”, and the virtual machine
emulated on that machine is generally referred to as the ”guest”. A host
can emulate several guests, each of which can emulate different operating
system / language platforms.

Q.3.2.3.6 Discuss different levels of virtual machine.
Answer: Different levels of virtualization of a machine are described be-
low (see Fig.3.1).
Instruction set architecture (ISA) is an abstract model of a computer. It
specifies basic operations, supported data types, registers, hardware sup-
port for managing main memory, fundamental features (such as the mem-
ory consistency, addressing modes, virtual memory), and input/output
model of a family of implementations of the ISA. The set of instructions
is also referred to as machine language.
Assembly language is kept above the ISA level. Assembly language uses
short mnemonics such as ADD, SUB, and MOV, which are easily trans-
lated to the ISA level. Assembly language programs are translated (as-
sembled) into their entirety into machine language before they begin to
execute.
High level languages such as C, Java and Pascal are kept at the level 4.
A high level program gets translated into assembly language program,
and then it gets converted into a machine language program. Finally,
the machine language program starts executing.

Q.3.2.3.7 What is an assembler directive?

12



Assemblers

Answer: An assembler directive instructs assembler to perform certain
actions during process of assembling program. E.g., ORIGIN 2000 di-
rects LC (Location Counter) to be set to 2000 address. Object program
starts generating code from that address onwards. The ORIGIN state-
ment is useful when target program does not contain consecutive memory
words.

Figure 3.1: Virtual machine levels

Q.3.2.3.8 What is a literal? Explain how the following commands are
processed by an assembler: (i) ADD A, (ii) ADD @21.
Answer: An operand, whose value is literally stated, is called a literal.
(i) Let A be a memory location. At the end of pass I, the assembler
gets the address of A. In the pass II, the assembler replaces ADD by
its corresponding machine code from machine op-code table. Then A is
replaced by its address from symbol table (ST).
(ii) @21 refers that 21 is a literal. 21 has to be directly added with the
accumulator. In the pass I, when the assembler gets the symbol 21 pre-
ceeded by @, then 21 is treated as a literal and put in the literal table.
At this time, the assembler associates a memory location for the literal
21, and the assembler puts value of literal 21 as 21 in the symbol table.
In the pass II, the assembler replaces ADD by its corresponding ma-
chine code from machine op-code table. Then literal 21 is replaced by
its address from literal table.

Q.3.2.3.9 What is load-and-go assembler?
Answer: Load-and-go assembler accepts input (i.e., an assembly lan-
guage program) and produces output in the main memory. It becomes

13


