1. Combinatorics

Q.1.2.1.1 Count the number of ways the letters in the word token can be arranged, so that there is no repetition.
Answer: The letters in token have to be placed without any repetition. 1st place can be filled in 5 ways; 2nd place can be filled in 4 ways; 3 rd place can be filled in 3 ways; 4 th place can be filled by 2 ways; 5 th place can be filled by 1 way. Using multiplication rule, total number of arrangements (without repetition) $=5 \times 4 \times 3 \times 2 \times 1=120$.
Q.1.2.1.2 How many ways can you get a sum of 4 or 12 using two identifiable dice?
Answer: Let (i, j) be the order pair, where i spots appear in the first die, and j spots appear in the second die. Then the favourable cases for getting sum of 4 are $(1,3),(3,1)$, and $(2,2)$. The number of such cases is equal to 3 . Again, the favourable case for getting sum of 12 is $(6,6)$. The number of cases is equal to 1 . Thus, the total number of cases of getting a sum of 4 or 12 is equal to $3+1=4$.
Q.1.2.1.3 Find the coefficient of x^{5} in $\left(1+2 x-x^{2}\right)^{7}$.

Answer: General term is $=\frac{7!}{n_{1}!n_{2}!n_{3}!}(1)^{n_{1}}(2 x)^{n_{2}}\left((-x)^{2}\right)^{n_{3}}$
$=\frac{7!2^{n_{2}}(-1)^{n_{3}}}{n_{1}!n_{2}!n_{3}!} x^{n_{2}+2 n_{3}}$
$n_{1}+n_{2}+n_{3}=7$
$n_{2}+2 n_{3}=5$
Values of n_{1}, n_{2} and n_{3} that satisfy (1) and (2) are given as follows.
Table 1. Possible values of n_{1}, n_{2}, n_{3}

n_{1}	n_{2}	n_{3}
2	5	0
3	3	1
4	1	2

The corresponding terms are $\frac{7!2^{5}(-1)^{0}}{2!5!0!} x^{5}, \frac{7!2^{3}(-1)^{1}}{3!3!1!} x^{5}$, and $\frac{7!2^{1}(-1)^{2}}{4!1!2!} x^{5}$. Therefore, the coefficient of x^{5} in the given expression
$=\frac{7!32}{2!5!}-\frac{7!8}{3!3!}+\frac{7!2}{4!2!}=-238$.
Q.1.2.1.4 How many ways a word of 3 letters can be formed from the word token?

Answer: 3 letters can be chosen from token in ${ }^{5} C_{3}$ ways. 3 letters in a word can be arranged in 3 ! ways. Thus, the number of ways a word of 3 letters can be formed is $={ }^{5} C_{3} \times 3!=\frac{5!3!}{3!(5-3)!}=\frac{5!}{2!}=60$.
Q.1.2.1.5 Three-digit numbers are formed from the set $\{0,1, \ldots, 9\}$ using (i) with repetition, (ii) without repetition. Find the total possible numbers in each case.
Answer: (i) Each of the three places can be filled in one of 10 digits, i.e., 10 possible ways. So, the total number of ways it can be done is $=$ $10 \times 10 \times 10=1000$.
(ii) First place can be filled in 10 ways. Second place can be filled in 9 ways. Third place can be filled in 8 ways. The total number of ways it can be done is $=10 \times 9 \times 8=720$.
Q.1.2.1.6 Show that the number of circular permutations is $(n-1)$! for n objects.
Answer: Let the objects be $a_{1}, a_{2}, \ldots, a_{n}$. We shall prove it using the method of induction. If there are 2 objects, the possible circular permutations is $a_{1} a_{2}$. Permutations $a_{1} a_{2}$ and $a_{2} a_{1}$ are essentially same, when objects a_{1} and a_{2} are placed in a circular manner. Hence, the number of circular permutation is 1 . So, the result is true for $n=2$.
Let the result be true for $n=k$. In this case, the number of circular permutations is $(k-1)$!. Let us consider a particular circular permutation $a_{1} a_{2} \ldots a_{k}$. Between $a_{i} a_{i+1}$ or $a_{k} a_{1}, a_{k+1}$ can be placed, $i=1,2, \ldots$, $k-1$. There are k places for each circular permutation. Thus, the total number of permutations for $(k+1)$ objects is $k \cdot(k-1)!=k!$. The result is true for $n=k+1$.
Q.1.2.1.7 Find the number of ways 5 men and 5 women sit around a table so that no two women sit together.
Answer: Five men can sit around a table in $(5-1)!=4!=24$ ways. In the round table there is a seat, one between every pair of men. These 5 seats can be occupied by 5 women in 5 ! ways. Then the total number of ways it can be done is equal to $24 \times 5!=2880$.
Q.1.2.1.8 How many ways can one arrange 7 different beads to form a necklace.
Answer: 7 different beads can be arranged in a circular manner in $(7-1)$! $=6$! ways. Here, there is no distinction between clockwise and anticlockwise arrangements. So, the required number of distinct ar-
rangements is equal to $\frac{1}{2} \times 6!=360$.
Q.1.2.1.9 There are 8 people with 4 men and 4 women.
(i) Find the number of ways a committee of 5 people can be formed.
(ii) How many ways a committee be formed such that all 4 women are available in the committee along with 2 men?
(iii) A committee of 2 people is required to form so that there is a person from each gender.
Answer: (i) 5 people can be selected from 8 people in ${ }^{8} C_{5}$ ways $=56$ ways.
(ii) All 4 women can be selected in ${ }^{4} C_{4}$ ways. 2 men can be selected in ${ }^{4} C_{2}$ ways.
Then, total number of committees is equal to ${ }^{4} C_{4} \times{ }^{4} C_{2}=6$.
(iii) 1 man can be selected in ${ }^{4} C_{1}$ ways. 1 woman can be selected in ${ }^{4} C_{1}$ ways. Thus, the total number of two member committees is equal to ${ }^{4} C_{1} \times{ }^{4} C_{1}=16$.
Q.1.2.1.10 Find the number of different license plates if each plate consists of two letters followed by two digits and then one letter followed by four digits. (An example: GA-05-B-3368)
Answer: First two letters can be filled in $26 \times 26=26^{2}$ ways. The following two digits can be filled in $10 \times 10=10^{2}$ ways. Then a single letter can be filled in 26 ways. The remaining part, i.e. 4 digits, can be chosen in $10 \times 10 \times 10 \times 10=10^{4}$ ways. The total number of license plates is equal to $26^{2} \times 10^{2} \times 26 \times 10^{4}=10^{6} \times 26^{3}$.
Q.1.2.1.11 There are 4 lists of projects containing 11 projects, 20 projects, 9 projects and 10 projects. How many ways can two students choose two projects such that there is no repetition.
Answer: Total number of projects $=11+20+9+10=50$. First student can choose any one of 50 projects. The second student can choose any one of remaining 49 projects. Total number of ways two projects can be chosen $=50 \times 49=2450$.
Q.1.2.1.12 Let a password be of at least six characters long but at the most eight characters long having at least one digit. The character set is $\{a, \ldots, z, 0, \ldots, 9\}$. Find the number of possible passwords.
Answer: Let T_{i} be the number of possible passwords of length i using atleast 1 digit, $i=6,7,8$. Total number of characters $=26+10=36$. $T_{i}=36^{i}-26^{i}, i=6,7,8$.

2. Mathematical Induction

Q.1.2.2.1 Prove that $n!\geq 2^{n-1}$, for $n=1,2,3, \ldots$.

Answer: We shall prove the result using the method of induction.
Basis step: For $n=1,1!=1$ and $2^{1-1}=2^{0}=1$. So, $1!\geq 2^{1-1}$.
Induction hypothesis: Assume that $i!\geq 2^{i-1}$, for $i=1,2, \ldots, n$.
Induction step: $(n+1)!=(n+1) n!\geq(n+1) 2^{n-1}$, by induction hypothesis
Thus, $(n+1)!\geq 2.2^{n-1}$, since $(n+1) \geq 2$
$\Rightarrow(n+1)!\geq 2^{\overline{(n+1)-1}}$
So, the result is true for $i=n+1$.
Q.1.2.2.2 Define $H_{k}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{k}$, for $k \geq 1$. Prove that $H_{2^{n}} \geq 1+\frac{n}{2}$, for $n \geq 0$ using the method of induction.
Answer: Basis step: For $n=0, H_{2^{0}}=1 \geq 1=1+\frac{0}{2}$.
Induction hypothesis: Assume that $H_{2^{i}} \geq 1+\frac{i}{2}$ for $i=0,1,2, \ldots, n$.
Induction step: $H_{2^{n+1}}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{2^{n}}+\frac{1}{2^{n}+1}+\cdots+\frac{1}{2^{n+1}}$.
$H_{2^{n+1}}=H_{2^{n}}+\frac{1}{2^{n}+1}+\frac{1}{2^{n}+2}+\cdots+\frac{1}{2^{n}+2^{n}}$, since $2^{n}+2^{n}=2.2^{n}=2^{n+1}$
$\geq 1+\frac{n}{2}+\frac{1}{2^{n}+1}+\frac{1}{2^{n}+2}+\cdots+\frac{1}{2^{n}+2^{n}}$, using induction hypothesis
$\geq 1+\frac{n}{2}+2^{n} \cdot \frac{1}{2^{n}+2^{n}}=1+\frac{n}{2}+\frac{1}{2}=1+\frac{n+1}{2}$. It is true for $i=n+1$.
Q.1.2.2.3 Show that $\frac{1}{2 n} \leq \frac{1.35 . \ldots(2 n-1)}{2.4 .6 \ldots(2 n)} \leq \frac{1}{\sqrt{n+1}}, n=1,2,3, \ldots$

Answer: First, we shall prove the inequality $\frac{1}{2 n} \leq \frac{1.3 .5 \ldots . .(2 n-1)}{2.4 . \ldots \ldots(2 n)}$ using the method of induction.
Basis step: $\frac{1}{2 n}=\frac{1}{2.1}=\frac{1}{2} \leq \frac{1}{2}$
Induction hypothesis: Assume that the result is true for $n=k$.
Induction step: We shall prove that the result is true for $n=k+1$.
$\frac{1.3 .5 \ldots(2 k-1)(2 k+1)}{2.4 .6 \ldots(2 k)(2 k+2)} \geq \frac{1}{2 k} \cdot \frac{2 k+1}{2 k+2}$ [by induction hypothesis]
$=\frac{2 k+1}{2 k} \cdot \frac{1}{2 k+2} \geq \frac{1}{2 k+2}$
The result is true for $n=k+1$.
Now, we shall prove the inequality $\frac{1.3 .5 \ldots(2 n-1)}{2.4 .6 \ldots(2 n)} \leq \frac{1}{\sqrt{n+1}}, n=1,2,3, \ldots$, using the method of induction.
For $n=1, \frac{1}{2} \leq \frac{1}{\sqrt{2}}$, since $2 \geq \sqrt{2}$
Let it be true for $n=k$. Therefore, $\frac{1.3 .5 . \ldots(2 k-1)}{2.4 .6 \ldots . .(2 k)} \leq \frac{1}{\sqrt{k+1}}, n=1,2,3, \ldots$
Consider $n=k+1 . \frac{1.3 .5 \ldots(2 k-1)(2 k+1)}{2.4 .6 \ldots(2 k)(2 k+2)} \leq \frac{1}{\sqrt{k+1}} \cdot \frac{2 k+1}{2 k+2}$, by induction hypothesis

To show $\frac{1}{\sqrt{k+1}} \cdot \frac{2 k+1}{2 k+2} \leq \frac{1}{\sqrt{k+2}}$, it is enough to show $\frac{k+2}{k+1} \leq\left(\frac{2 k+2}{2 k+1}\right)^{2}$
i.e., to show $1+\frac{1}{k+1} \leq\left(1+\frac{1}{2 k+1}\right)^{2}=1+\frac{2}{2 k+1}+\frac{1}{(2 k+1)^{2}}$
i.e., to show $0 \leq \frac{2}{2 k+1}-\frac{1}{k+1}+\frac{1}{(2 k+1)^{2}}=\frac{1}{(2 k+1)(k+1)}+\frac{1}{(2 k+1)^{2}}$

Now, for some integer $k \geq 0$, the expression $\frac{1}{(2 k+1)(k+1)}+\frac{1}{(2 k+1)^{2}} \geq 0$
This follows the induction step.
Q.1.2.2.4 What is pigeonhole principle?

Answer: If A and B are nonempty finite sets and $|A|>|B|$, then there is no one-to-one function from A to B. In otherwords, if we attempt to pair off the elements of A (the "pigeons") with elements of B (the "pigeonholes"), sooner or later we will have to put more than one pigeon in a pigeonhole.
Q.1.2.2.5 Show by induction that $n^{4}-4 n^{2}$ is divisible by 3 , when $n(\geq 0)$ is an integer.
Answer: Let $f(n)=n^{4}-4 n^{2} . f(0)=0^{4}-4.0^{2}=0$, and it is divisible by 3 .
Assume that $f(n)=n^{4}-4 n^{2}$ is divisible by 3 , for $n=k$.
i.e., we assume $f(k)=k^{4}-4 k^{2}$ is divisible by 3 .

We have to prove that $f(k+1)=(k+1)^{4}-4(k+1)^{2}$ is divisible by 3 .
Now, $f(k+1)-f(k)=(k+1)^{4}-4(k+1)^{2}-k^{4}+4 . k^{2}$
$=4 k^{3}+6 k^{2}-4 k-3=4 k\left(k^{2}-1\right)+3\left(2 k^{2}-1\right)$
$=\left(k^{2}-1\right)(4 k+3)+3 k^{2}=\left(k^{2}-1\right)(3 k+3)+3 k^{2}+k\left(k^{2}-1\right)$
$=3\left\{k^{2}+(k+1)\left(k^{2}-1\right)\right\}+(k-1) k(k+1)=t_{1}+t_{2}$
where, $t_{1}=3\left\{k^{2}+(k+1)\left(k^{2}-1\right)\right\}$ is divisible by 3 , and $t_{2}=(k-1) k(k+1)$ is a product of three consecutive integers.
So, it is divided by 3. Then, $f(k+1)-f(k)=t_{1}+t_{2}$ is divisible by 3 .
Thus, if $f(k)$ is divisible by 3 , then $f(k+1)=f(k)+t_{1}+t_{2}$ is also divisible by 3 .
Therefore, $f(n)=n^{4}-4 n^{2}$ is divisible by 3 , when $n(\geq 0)$ is an integer.
Q.1.2.2.6 Prove by induction $\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\cdots+\frac{1}{(2 n-1)(2 n+1)}=\frac{n}{2 n+1}$.

Answer: Let $f(n)=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\cdots+\frac{1}{(2 n-1)(2 n+1)}$
Now, $f(1)=\frac{1}{1.3}=\frac{1}{3}=\frac{1}{2.1+1}$. So, it is true for $n=1$.
Assume that it is true for $n=k$.
$f(k)=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\cdots+\frac{1}{(2 k-1)(2 k+1)}=\frac{k}{2 k+1}$
Now, $f(k+1)=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\cdots+\frac{1}{(2 k-1)(2 k+1)}+\frac{1}{(2 k+1)(2 k+3)}$
$=f(k)+\frac{1}{(2 k+1)(2 k+3)}$
$=\frac{k}{(2 k+1)}+\frac{1}{(2 k+1)(2 k+3)}=\frac{1}{(2 k+1)}\left[k+\frac{1}{(2 k+3)}\right]$
$=\frac{(2 k+1)(k+1)}{(2 k+1)\{2(k+1)+1\}}=\frac{k+1}{2(k+1)+1}$
It is true for $n=k+1$.
Thus, $\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\cdots+\frac{1}{(2 n-1)(2 n+1)}=\frac{n}{2 n+1}, \forall n \geq 1$.
Q.1.2.2.7 Prove by induction the following inequality: $n<2^{n}, n=$ $1,2,3, \ldots$
Answer: For $n=1,1<2$, i.e. $1<2^{1}$. Thus, it is true for $n=1$.
Let it be true for $n=k$. Then $k<2^{k}$ (induction hypothesis)
So, $k+1<2^{k}+1<2^{k}+2^{k}=2.2^{k}=2^{k+1}$. Thus, it is true for $n=k+1$.
Q.1.2.2.8 Consider harmonic numbers as defined below.
$H_{i}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{i}, i=1,2,3, \ldots$
Show that $H_{2^{n}} \geq 1+\frac{n}{2}, n=0,1,2, \ldots$ (Use mathematical induction)
Answer: For $n=0, H_{2^{0}}=H_{1}=1 \geq 1+\frac{0}{2}$. The result is true for $n=0$.
Let it be true for $n=k$. Then, $H_{2^{k}} \geq 1+\frac{k}{2}$.
$H_{2^{k+1}}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{2^{k}}+\frac{1}{2^{k}+1}+\cdots+\frac{1}{2^{k+1}}$
$=H_{2^{k}}+\frac{1}{2^{k}+1}+\frac{1}{2^{k}+2}+\cdots+\frac{1}{2^{k+1}}$
$\geq\left(1+\frac{k}{2}\right)+\frac{1}{2^{k}+1}+\frac{1}{2^{k}+2}+\cdots+\frac{1}{2^{k+1}}$
$\geq\left(1+\frac{k}{2}\right)+2^{k} \cdot \frac{1}{2^{k+1}}$
$=1+\frac{k}{2}+\frac{1}{2}=1+\frac{k+1}{2}$
It is true for $n=k+1$, and the result follows.
Q.1.2.2.9 Apply mathematical induction to prove that
$2-2.7+2.7^{2}-\cdots+2(-7)^{n}=\frac{\left(1-(-7)^{n+1}\right)}{4}, n=0,1,2, \ldots$
Answer: For, $n=0, \mathrm{LHS}=2, \mathrm{RHS}=\frac{\left(1-(-7)^{1}\right)}{4}=\frac{8}{4}=2$
Therefore, the result is true for $n=0$.
Let the result be true for $n=k$ (induction hypothesis)
For $n=k+1$, LHS $=2-2.7+2.7^{2}-\cdots+2(-7)^{k}+2 \cdot(-7)^{k+1}$
$=\frac{\left(1-(-7)^{k+1}\right)}{4}+2 \cdot(-7)^{k+1}$ (by induction)
$=\frac{1}{4}-\frac{(-7)^{k+1}}{4}+\frac{8}{4} \cdot(-7)^{k+1}$
$=\frac{1+7 \cdot(-7)^{k+1}}{4}=\frac{1-(-7)(-7)^{k+1}}{4}=\frac{1-(-7)^{k+2}}{4}=$ RHS
The result is true for $n=k+1$.
Q.1.2.2.10 Show that $H_{1}+H_{2}+\cdots+H_{n}=(n+1) H_{n}-n$, where $H_{i}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{i}, i=1,2,3, \ldots$
Answer: We apply here the method of mathematical induction. For $n=1, \operatorname{LHS}=1, \operatorname{RHS}=(1+1) 1-1$. So, it is true for $n=1$.

3. Recurrence Relation

Q.1.2.3.1 Let $C_{1}=1$ and let $C_{n}=C_{1} C_{n-1}+C_{2} C_{n-2}+\cdots+C_{n-1} C_{1}$, for $n>1$. Determine the final five values of C_{n}.
Answer: $C_{2}=C_{1} C_{1}=1.1=1, C_{3}=C_{1} C_{2}+C_{2} C_{1}=1.1+1.1=2$
$C_{4}=C_{1} C_{3}+C_{2} C_{2}+C_{3} C_{1}=1.2+1.1+2.1=5$
$C_{5}=C_{1} C_{4}+C_{2} C_{3}+C_{3} C_{2}+C_{4} C_{1}=1.5+1.2+2.1+5.1=14$
Q.1.2.3.2 Let H_{n} be n-th harmonic number. Show that $H_{n} \leq \frac{n+1}{2}$.

Answer: The following recurrence relation for a sequence is known as harmonic numbers.
$H_{1}=1$ and for $n>1$ let $H_{n}=H_{n-1}+\frac{1}{n}$
$H_{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n} \leq 1+\frac{1}{2}+\frac{1}{2}+\cdots+\frac{1}{2}=1+(n-1) \cdot \frac{1}{2}=\frac{n+1}{2}$
Q.1.2.3.3 Find the recurrence relation that is formed by the sequence $a_{n}=n^{2}-6 n+8$.
Answer: $a_{n}=n^{2}-6 n+8, a_{n-1}=(n-1)^{2}-6(n-1)+8$
Thus, $a_{n}-a_{n-1}=2 n+5$.
Q.1.2.3.4 Solve the linear homogeneous recurrence relation with constant coefficients.
$a_{n}=a_{n-1}+a_{n+1}, n>1$
where, $a_{0}=0$ and $a_{1}=1$
Answer: The characteristic equation of (1) is $x^{2}-x-1=0$. It has characteristic roots $\phi=\frac{(1+\sqrt{5})}{2}$ and $\phi^{\prime}=\frac{(1-\sqrt{5})}{2}$. So, the general solution of (1) is
$a_{n}=C_{1}\left(\frac{1+\sqrt{5}}{2}\right)^{n}+C_{2}\left(\frac{1-\sqrt{5}}{2}\right)^{n}, C_{1}$ and C_{2} are constants.
$a_{0}=C_{1}+C_{2}=0$ (using (2))
$a_{1}=C_{1}\left(\frac{1+\sqrt{5}}{2}\right)+C_{2}\left(\frac{1-\sqrt{5}}{2}\right)=1$ (using (2))
By solving (3) and (4), we get $C_{1}=\frac{1}{\sqrt{5}}$ and $C_{2}=-\frac{1}{\sqrt{5}}$
The general solution of (1) becomes $a_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right]$.
Q.1.2.3.5 If c and d are constants with $d>1$ and $a_{n} \leq d a_{\left\lfloor\frac{n}{d}\right\rfloor}+c n$ then $a_{n} \leq c n l_{0}(n)+a_{1} n$.
Answer: We shall prove this by induction on n. For the base case, we have that $a_{1} \leq 0+a_{1} .1$. We assume that the theorem is true for all $n<k$ and we examine a_{k}.
$a_{k} \leq d a_{\left\lfloor\frac{k}{d}\right\rfloor}+c k$ (by the given condition)
$\leq d\left[c\left\lfloor\frac{k}{d}\right\rfloor \log _{d}\left(\left\lfloor\frac{k}{d}\right\rfloor\right)+a_{1}\left\lfloor\frac{k}{d}\right\rfloor\right]+c k$ (by induction hypothesis)
$\leq d\left[c\left(\frac{k}{d}\right) \log _{d}\left(\frac{k}{d}\right)+a_{1}\left(\frac{k}{d}\right)\right]+c k\left(\right.$ since $\left.\left\lfloor\frac{k}{d}\right\rfloor \leq \frac{k}{d}\right)$
$=c k \log _{d}\left(\frac{k}{d}\right)+a_{1} k+c k=c k\left[\log _{d}(k)-1\right]+a_{1} k+c k$
$=c k \log _{d}(k)+a_{1} k$
Q.1.2.3.6 Solve the recurrence relation $a_{n}=4 a_{n-1}-4 a_{n-2}+3 n$ with $a_{0}=1$ and $a_{1}=3$.
Answer: $a_{n}=4 a_{n-1}-4 a_{n-2}+3 n$
The homogeneous equation of (5) is $a_{n}-4 a_{n-1}+4 a_{n-2}$
The characteristic polynomial of (6) is $x^{2}-4 x+4=0$, or $(x-2)^{2}=0$.
The characteristic roots of (6) are $x_{1}=2$ and $x_{2}=2$.
General solution of (6) is $a_{n}=\left(k_{1}+k_{2} n\right) 2^{n}$, where k_{1} and k_{2} are constants.
Since non-homogeneous part is a polynomial in n of degree 1 , so the particular solution of (5) is also a polynomial in n of degree 1 .
Let $a_{n}=k_{3}+k_{4} n$ be a particular solution. So, it satisfies (5).
$k_{3}+k_{4} n=4\left(k_{3}+k_{4}(n-1)\right)-\left(k_{3}+k_{4}(n-2)\right)+3 n$
or, $k_{3}+k_{4} n=4 n k_{4}-4 k_{4}-4 n k_{4}+8 k_{4}+3 n$
o,r $k_{3}+k_{4} n=4 k_{4}+3 n$
Equating the coefficients of n^{1}, n^{0} in both sides, we get
$k_{3}=4 k_{4}$ and $k_{4}=3$
$k_{3}=4 k_{4}=4.3=12$.
Particular solution of (5) is $a_{n}=12+3 n$.
General solution of (5) is $a_{n}=\left(k_{1}+k_{2} n\right) 2^{n}+12+3 n$.
$a_{0}=1 \Rightarrow k_{1}+12=1$ or $k_{1}=-11$
$a_{1}=3 \Rightarrow\left(k_{1}+k_{2}\right) \cdot 2+12+3=3$ or, $k_{2}=5$
$a_{n}=(-11+5 n) 2^{n}+12+3 n$ is the solution of (5).
Q.1.2.3.7 Solve $a_{n}=2 a_{n-1}+3 n^{2}+2.3^{n}$, where $a_{0}=1$.

Answer: $a_{n}=2 a_{n-1}+3 n^{2}+2.3^{n}$
The homogeneous equation of (8) is $a_{n}-2 a_{n-1}=0$
The characteristic polynomial of (9) is $x-2=0$
The characteristic roots of (9) is $x_{1}=2$
The general solution of (9) is $a_{n}=k .2^{n}, k$ is a constant
Note that the non-linear part of (8) is a combination of a polynomial of degree 2 and an exponential function. So, the particular solution of
(8) will be a combination of second degree polynomial and a_{n} similar exponential function.

Let $a_{n}=k_{0}+k_{1} n+k_{2} n^{2}+k_{3} 3^{n}, k_{i}$ is a constant, $i=0,1,2,3, \ldots$ be a solution. So, it satisfies (8).
$k_{0}+k_{1} n+k_{2} n^{2}+k_{3} 3^{n}=2\left(k_{0}+k_{1} n-k_{1}+k_{2} n^{2}-2 k_{2} n+k_{2}+k_{3} .3^{n-1}\right)+$ $3 n^{2}+2.3^{n}$
Equating the constant term, we get
$k_{0}=2 k_{0}-2 k_{1}+2 k_{2}$ or, $k_{0}-2 k_{1}+2 k_{2}=0$
Equating the coefficient of n, we get $k_{1}=2 k_{1}-4 k_{2}$ or, $k_{1}=4 k_{2}$.
Equating the coefficient of n^{2}, we get $k_{2}=2 k_{2}+3$ or, $k_{2}=-3$.
Equating the coefficient of 3^{n}, we have $k_{3}=\frac{2 k_{3}}{3}+2$ or, $k_{3}=6$
Solving [using (10), (11), (12) and (13)] we get
$k_{0}=-18, k_{1}=-12, k_{2}=-3$ and $k_{3}=6$.
General solution of (8) is $a_{n}=k \cdot 2^{n}-18-12 n-3 n^{2}+6.3^{n}$.
Given that $a_{0}=1$. So, $k-18+6=1$ or, $\mathrm{k}=13$.
$a_{n}=13.2^{n}+6.3^{n}-3 n^{2}-12 n-18$.
Q.1.2.3.8 Solve using generating function $a_{n}=2 a_{n-1}+7$, where $a_{0}=0$.

Answer: Here, $a_{n}=2 a_{n-1}+7$
or, $\sum_{n=1}^{\infty} a_{n} x^{n}=\sum_{n=1}^{\infty} 2 a_{n-1} x^{n}+\sum_{n=1}^{\infty} 7 x^{n},|x|<1$
or, $G(x)-a_{0}=2 x G(x)+7 x(1-x)^{-1}$, where, $G(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$
or, $G(x)=7 x(1-x)^{-1}(1-2 x)^{-1}$
or, $G(x)=7 x\left(1+x+x^{2}+\ldots\right)\left(1+2 x+2^{2} x^{2}+\ldots\right)$
$a_{n}=$ co-efficient of $x^{n}=7\left(2^{n-1}+2^{n-2}+\ldots\right)=7\left(2^{n}-1\right)$.
Q.1.2.3.9 Solve using generating function.
$a_{n}=a_{n-1}+a_{n-2}, a_{0}=a_{1}=1$
Answer: Now, $a_{n}=a_{n-1}+a_{n-2}$
or, $\sum_{n=2}^{\infty} a_{n} x^{n}=\sum_{n=2}^{\infty} a_{n-1} x^{n}+\sum_{n=2}^{\infty} a_{n-2} x^{n}$
or, $G(x)-a_{0}-a_{1} x=x\left(G(x)-a_{0}\right)+x^{2} G(x)$, where, $G(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$
$G(x)-x=x G(x)+x^{2} G(x)$
or, $G(x)\left(1-x-x^{2}\right)=x$
or, $G(x)=x\left(1-x-x^{2}\right)^{-1}$
Now, $\frac{1}{1-x-x^{2}}=-\frac{1}{x^{2}+x-1}=-\frac{1}{(x-\alpha)(x-\beta)}$
We find the roots of equation: $x^{2}+x-1=0$
The roots are $x=\frac{-1 \pm \sqrt{5}}{2}$
So, $\alpha=\frac{-1+\sqrt{5}}{1^{2}}, \beta=\frac{-1-\sqrt{5}}{2}$
Now, $\frac{1^{2}}{(x-\alpha)(x-\beta)}=\frac{1^{2}}{(\alpha-\beta)}\left[\frac{1}{x-\alpha}-\frac{1}{x-\beta}\right]$
$G(x)=-\frac{x}{\sqrt{5}}\left[\frac{1}{x-\alpha}-\frac{1}{x-\beta}\right]=-\frac{x}{\sqrt{5}}\left[-(x-\alpha)^{-1}+(x-\beta)^{-1}\right]$
$G(x)=\frac{x}{\sqrt{5}}\left[\frac{1}{\alpha}\left(1-\frac{x}{\alpha}\right)^{-1}-\frac{1}{\beta}\left(1-\frac{x}{\beta}\right)^{-1}\right]$
$a_{n}=\frac{1}{\sqrt{5}}\left[\frac{1}{\alpha} \cdot \frac{1}{\alpha^{n-1}}-\frac{1}{\beta} \cdot \frac{1}{\beta^{n-1}}\right]=\frac{1}{\sqrt{5}}\left(\frac{1}{\alpha^{n}}-\frac{1}{\beta^{n}}\right)$

