
Combinatorics

1. Combinatorics

Q.1.2.1.1 Count the number of ways the letters in the word token can be
arranged, so that there is no repetition.
Answer: The letters in token have to be placed without any repetition.
1st place can be filled in 5 ways; 2nd place can be filled in 4 ways; 3rd
place can be filled in 3 ways; 4th place can be filled by 2 ways; 5th place
can be filled by 1 way. Using multiplication rule, total number of ar-
rangements (without repetition) = 5× 4× 3× 2× 1 = 120.

Q.1.2.1.2 How many ways can you get a sum of 4 or 12 using two iden-
tifiable dice?
Answer: Let (i, j ) be the order pair, where i spots appear in the first
die, and j spots appear in the second die. Then the favourable cases for
getting sum of 4 are (1, 3), (3, 1), and (2, 2). The number of such cases
is equal to 3. Again, the favourable case for getting sum of 12 is (6, 6).
The number of cases is equal to 1. Thus, the total number of cases of
getting a sum of 4 or 12 is equal to 3 + 1 = 4.

Q.1.2.1.3 Find the coefficient of x5 in (1 + 2x− x2)7.
Answer: General term is = 7!

n1!n2!n3!
(1)n1(2x)n2((−x)2)n3

= 7!2n2 (−1)n3

n1!n2!n3!
xn2+2n3

n1 + n2 + n3 = 7 (1)
n2 + 2n3 = 5 (2)
Values of n1, n2 and n3 that satisfy (1) and (2) are given as follows.

Table 1. Possible values of n1, n2, n3
n1 n2 n3
2 5 0
3 3 1
4 1 2

The corresponding terms are 7!25(−1)0
2!5!0! x5, 7!2

3(−1)1
3!3!1! x5, and 7!21(−1)2

4!1!2! x5. There-
fore, the coefficient of x5 in the given expression
= 7!32

2!5! −
7!8
3!3! + 7!2

4!2! = −238.

Q.1.2.1.4 How many ways a word of 3 letters can be formed from the
word token?
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Answer: 3 letters can be chosen from token in 5C3 ways. 3 letters in a
word can be arranged in 3! ways. Thus, the number of ways a word of
3 letters can be formed is = 5C3 × 3! = 5!3!

3!(5−3)! = 5!
2! = 60.

Q.1.2.1.5 Three-digit numbers are formed from the set {0, 1, ..., 9} us-
ing (i) with repetition, (ii) without repetition. Find the total possible
numbers in each case.
Answer: (i) Each of the three places can be filled in one of 10 digits,
i.e., 10 possible ways. So, the total number of ways it can be done is =
10× 10× 10 = 1000.
(ii) First place can be filled in 10 ways. Second place can be filled in 9
ways. Third place can be filled in 8 ways. The total number of ways it
can be done is = 10× 9× 8 = 720.

Q.1.2.1.6 Show that the number of circular permutations is (n-1)! for n
objects.
Answer: Let the objects be a1, a2, . . . , an. We shall prove it using the
method of induction. If there are 2 objects, the possible circular permu-
tations is a1a2. Permutations a1a2 and a2a1 are essentially same, when
objects a1 and a2 are placed in a circular manner. Hence, the number of
circular permutation is 1. So, the result is true for n = 2.
Let the result be true for n = k. In this case, the number of circular
permutations is (k -1)!. Let us consider a particular circular permutation
a1a2 . . . ak. Between aiai+1 or aka1, ak+1 can be placed, i = 1, 2, . . . ,
k -1. There are k places for each circular permutation. Thus, the total
number of permutations for (k+ 1) objects is k.(k− 1)! = k!. The result
is true for n = k + 1.

Q.1.2.1.7 Find the number of ways 5 men and 5 women sit around a
table so that no two women sit together.
Answer: Five men can sit around a table in (5 - 1)! = 4! = 24 ways. In
the round table there is a seat, one between every pair of men. These 5
seats can be occupied by 5 women in 5! ways. Then the total number of
ways it can be done is equal to 24× 5! = 2880.

Q.1.2.1.8 How many ways can one arrange 7 different beads to form
a necklace.
Answer: 7 different beads can be arranged in a circular manner in
(7 − 1)! = 6! ways. Here, there is no distinction between clockwise
and anticlockwise arrangements. So, the required number of distinct ar-
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rangements is equal to 1
2 × 6! = 360.

Q.1.2.1.9 There are 8 people with 4 men and 4 women.
(i) Find the number of ways a committee of 5 people can be formed.
(ii) How many ways a committee be formed such that all 4 women are
available in the committee along with 2 men?
(iii) A committee of 2 people is required to form so that there is a person
from each gender.
Answer: (i) 5 people can be selected from 8 people in 8C5 ways = 56
ways.
(ii) All 4 women can be selected in 4C4 ways. 2 men can be selected in
4C2 ways.
Then, total number of committees is equal to 4C4 ×4 C2 = 6.
(iii) 1 man can be selected in 4C1 ways. 1 woman can be selected in
4C1 ways. Thus, the total number of two member committees is equal
to 4C1 ×4 C1 = 16.

Q.1.2.1.10 Find the number of different license plates if each plate con-
sists of two letters followed by two digits and then one letter followed by
four digits. (An example: GA-05-B-3368)
Answer: First two letters can be filled in 26 × 26 = 262 ways. The fol-
lowing two digits can be filled in 10×10 = 102 ways. Then a single letter
can be filled in 26 ways. The remaining part, i.e. 4 digits, can be chosen
in 10 × 10 × 10 × 10 = 104 ways. The total number of license plates is
equal to 262 × 102 × 26× 104 = 106 × 263.

Q.1.2.1.11 There are 4 lists of projects containing 11 projects, 20 projects,
9 projects and 10 projects. How many ways can two students choose two
projects such that there is no repetition.
Answer: Total number of projects = 11 + 20 + 9 + 10 = 50. First stu-
dent can choose any one of 50 projects. The second student can choose
any one of remaining 49 projects. Total number of ways two projects
can be chosen = 50× 49 = 2450.

Q.1.2.1.12 Let a password be of at least six characters long but at the
most eight characters long having at least one digit. The character set
is {a, . . . , z, 0, . . . , 9}. Find the number of possible passwords.
Answer: Let Ti be the number of possible passwords of length i using
atleast 1 digit, i = 6, 7, 8. Total number of characters = 26 + 10 = 36.
Ti = 36i − 26i, i = 6, 7, 8.
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2. Mathematical Induction

Q.1.2.2.1 Prove that n! ≥ 2n−1, for n = 1, 2, 3, . . . . .
Answer: We shall prove the result using the method of induction.
Basis step: For n = 1, 1! = 1 and 21−1 = 20 = 1. So, 1! ≥ 21−1.
Induction hypothesis: Assume that i! ≥ 2i−1, for i = 1, 2, . . . , n.
Induction step: (n+ 1)! = (n+ 1)n! ≥ (n+ 1)2n−1, by induction hypoth-
esis
Thus, (n+ 1)! ≥ 2.2n−1, since (n+ 1) ≥ 2
⇒ (n+ 1)! ≥ 2(n+1)−1

So, the result is true for i = n+ 1.

Q.1.2.2.2 Define Hk = 1 + 1
2 + 1

3 + · · · + 1
k , for k ≥ 1. Prove that

H2n ≥ 1 + n
2 , for n ≥ 0 using the method of induction.

Answer: Basis step: For n = 0, H20 = 1 ≥ 1 = 1 + 0
2 .

Induction hypothesis: Assume that H2i ≥ 1 + i
2 for i = 0, 1, 2, . . . , n.

Induction step: H2n+1 = 1 + 1
2 + 1

3 + · · ·+ 1
2n + 1

2n+1 + · · ·+ 1
2n+1 .

H2n+1 = H2n + 1
2n+1 + 1

2n+2 + · · ·+ 1
2n+2n , since 2n + 2n = 2.2n = 2n+1

≥ 1 + n
2 + 1

2n+1 + 1
2n+2 + · · ·+ 1

2n+2n , using induction hypothesis

≥ 1 + n
2 + 2n. 1

2n+2n = 1 + n
2 + 1

2 = 1 + n+1
2 . It is true for i = n+ 1.

Q.1.2.2.3 Show that 1
2n ≤

1.3.5...(2n−1)
2.4.6...(2n) ≤

1√
n+1

, n = 1, 2, 3, . . .

Answer: First, we shall prove the inequality 1
2n ≤

1.3.5...(2n−1)
2.4.6...(2n) using the

method of induction.
Basis step: 1

2n = 1
2.1 = 1

2 ≤
1
2

Induction hypothesis: Assume that the result is true for n = k.
Induction step: We shall prove that the result is true for n = k + 1.
1.3.5...(2k−1)(2k+1)
2.4.6...(2k)(2k+2) ≥

1
2k .

2k+1
2k+2 [by induction hypothesis]

= 2k+1
2k . 1

2k+2 ≥
1

2k+2
The result is true for n = k + 1.
Now, we shall prove the inequality 1.3.5...(2n−1)

2.4.6...(2n) ≤
1√
n+1

, n = 1, 2, 3, . . . ,

using the method of induction.
For n = 1, 12 ≤

1√
2
, since 2 ≥

√
2

Let it be true for n = k. Therefore, 1.3.5...(2k−1)
2.4.6...(2k) ≤

1√
k+1

, n = 1, 2, 3, . . .

Consider n = k + 1. 1.3.5...(2k−1)(2k+1)
2.4.6...(2k)(2k+2) ≤

1√
k+1

.2k+1
2k+2 , by induction hy-

pothesis
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To show 1√
k+1

.2k+1
2k+2 ≤

1√
k+2

, it is enough to show k+2
k+1 ≤ (2k+2

2k+1)2

i.e., to show 1 + 1
k+1 ≤ (1 + 1

2k+1)2 = 1 + 2
2k+1 + 1

(2k+1)2

i.e., to show 0 ≤ 2
2k+1 −

1
k+1 + 1

(2k+1)2
= 1

(2k+1)(k+1) + 1
(2k+1)2

Now, for some integer k ≥ 0, the expression 1
(2k+1)(k+1) + 1

(2k+1)2
≥ 0

This follows the induction step.

Q.1.2.2.4 What is pigeonhole principle?
Answer: If A and B are nonempty finite sets and |A| > |B|, then there
is no one-to-one function from A to B. In otherwords, if we attempt to
pair off the elements of A (the ”pigeons”) with elements of B (the ”pi-
geonholes”), sooner or later we will have to put more than one pigeon in
a pigeonhole.

Q.1.2.2.5 Show by induction that n4−4n2 is divisible by 3, when n(≥ 0)
is an integer.
Answer: Let f(n) = n4 − 4n2. f(0) = 04 − 4.02 = 0, and it is divisible
by 3.
Assume that f(n) = n4 − 4n2 is divisible by 3, for n = k.
i.e., we assume f(k) = k4 − 4k2 is divisible by 3.
We have to prove that f(k + 1) = (k + 1)4 − 4(k + 1)2 is divisible by 3.
Now, f(k + 1)− f(k) = (k + 1)4 − 4(k + 1)2 − k4 + 4.k2

= 4k3 + 6k2 − 4k − 3 = 4k(k2 − 1) + 3(2k2 − 1)
= (k2 − 1)(4k + 3) + 3k2 = (k2 − 1)(3k + 3) + 3k2 + k(k2 − 1)
= 3{k2 + (k + 1)(k2 − 1)}+ (k − 1)k(k + 1) = t1 + t2
where, t1 = 3{k2+(k+1)(k2−1)} is divisible by 3, and t2 = (k−1)k(k+1)
is a product of three consecutive integers.
So, it is divided by 3. Then, f(k + 1)− f(k) = t1 + t2 is divisible by 3.
Thus, if f(k) is divisible by 3, then f(k + 1) = f(k) + t1 + t2 is also
divisible by 3.
Therefore, f(n) = n4 − 4n2 is divisible by 3, when n(≥ 0) is an integer.

Q.1.2.2.6 Prove by induction 1
1.3 + 1

3.5 + 1
5.7 + · · ·+ 1

(2n−1)(2n+1) = n
2n+1 .

Answer: Let f(n) = 1
1.3 + 1

3.5 + 1
5.7 + · · ·+ 1

(2n−1)(2n+1)

Now, f(1) = 1
1.3 = 1

3 = 1
2.1+1 . So, it is true for n = 1.

Assume that it is true for n = k.
f(k) = 1

1.3 + 1
3.5 + 1

5.7 + · · ·+ 1
(2k−1)(2k+1) = k

2k+1

Now, f(k + 1) = 1
1.3 + 1

3.5 + 1
5.7 + · · ·+ 1

(2k−1)(2k+1) + 1
(2k+1)(2k+3)

= f(k) + 1
(2k+1)(2k+3)
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= k
(2k+1) + 1

(2k+1)(2k+3) = 1
(2k+1) [k + 1

(2k+3) ]

= (2k+1)(k+1)
(2k+1){2(k+1)+1} = k+1

2(k+1)+1
It is true for n = k + 1.
Thus, 1

1.3 + 1
3.5 + 1

5.7 + · · ·+ 1
(2n−1)(2n+1) = n

2n+1 ,∀n ≥ 1.

Q.1.2.2.7 Prove by induction the following inequality: n < 2n, n =
1, 2, 3, . . .
Answer: For n = 1, 1 < 2, i.e. 1 < 21. Thus, it is true for n = 1.
Let it be true for n = k. Then k < 2k (induction hypothesis)
So, k+1 < 2k+1 < 2k+2k = 2.2k = 2k+1. Thus, it is true for n = k+1.

Q.1.2.2.8 Consider harmonic numbers as defined below.
Hi = 1 + 1

2 + 1
3 + · · ·+ 1

i , i = 1, 2, 3, . . .
Show that H2n ≥ 1 + n

2 , n = 0, 1, 2, . . . (Use mathematical induction)
Answer: For n = 0, H20 = H1 = 1 ≥ 1 + 0

2 . The result is true for n = 0.

Let it be true for n = k. Then, H2k ≥ 1 + k
2 .

H2k+1 = 1 + 1
2 + 1

3 + · · ·+ 1
2k

+ 1
2k+1

+ · · ·+ 1
2k+1

= H2k + 1
2k+1

+ 1
2k+2

+ · · ·+ 1
2k+1

≥ (1 + k
2 ) + 1

2k+1
+ 1

2k+2
+ · · ·+ 1

2k+1

≥ (1 + k
2 ) + 2k. 1

2k+1

= 1 + k
2 + 1

2 = 1 + k+1
2

It is true for n = k + 1, and the result follows.

Q.1.2.2.9 Apply mathematical induction to prove that

2− 2.7 + 2.72 − · · ·+ 2(−7)n = (1−(−7)n+1)
4 ,n = 0, 1, 2, . . .

Answer: For, n = 0, LHS = 2, RHS = (1−(−7)1)
4 = 8

4 = 2
Therefore, the result is true for n = 0.
Let the result be true for n = k (induction hypothesis)
For n = k + 1, LHS = 2− 2.7 + 2.72 − · · ·+ 2(−7)k + 2.(−7)k+1

= (1−(−7)k+1)
4 + 2.(−7)k+1 (by induction)

= 1
4 −

(−7)k+1

4 + 8
4 .(−7)k+1

= 1+7.(−7)k+1

4 = 1−(−7)(−7)k+1

4 = 1−(−7)k+2

4 = RHS
The result is true for n = k + 1.

Q.1.2.2.10 Show that H1 + H2 + · · · + Hn = (n + 1)Hn − n, where
Hi = 1 + 1

2 + 1
3 + · · ·+ 1

i , i = 1, 2, 3, . . .
Answer: We apply here the method of mathematical induction. For
n = 1, LHS = 1, RHS = (1 + 1) 1 - 1. So, it is true for n = 1.
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3. Recurrence Relation

Q.1.2.3.1 Let C1 = 1 and let Cn = C1Cn−1 + C2Cn−2 + · · · + Cn−1C1,
for n > 1. Determine the final five values of Cn.
Answer: C2 = C1C1 = 1.1 = 1, C3 = C1C2 + C2C1 = 1.1 + 1.1 = 2
C4 = C1C3 + C2C2 + C3C1 = 1.2 + 1.1 + 2.1 = 5
C5 = C1C4 + C2C3 + C3C2 + C4C1 = 1.5 + 1.2 + 2.1 + 5.1 = 14

Q.1.2.3.2 Let Hn be n-th harmonic number. Show that Hn ≤ n+1
2 .

Answer: The following recurrence relation for a sequence is known as
harmonic numbers.
H1 = 1 and for n > 1 let Hn = Hn−1 + 1

n
Hn = 1 + 1

2 + 1
3 + · · ·+ 1

n ≤ 1 + 1
2 + 1

2 + · · ·+ 1
2 = 1 + (n− 1).12 = n+1

2

Q.1.2.3.3 Find the recurrence relation that is formed by the sequence
an = n2 − 6n+ 8.
Answer: an = n2 − 6n+ 8, an−1 = (n− 1)2 − 6(n− 1) + 8
Thus, an − an−1 = 2n+ 5.

Q.1.2.3.4 Solve the linear homogeneous recurrence relation with constant
coefficients.
an = an−1 + an+1, n > 1 (1)
where, a0 = 0 and a1 = 1 (2)
Answer: The characteristic equation of (1) is x2−x−1 = 0. It has char-

acteristic roots φ = (1+
√
5)

2 and φ′ = (1−
√
5)

2 . So, the general solution of
(1) is

an = C1(
1+
√
5

2 )n + C2(
1−
√
5

2 )n, C1 and C2 are constants.
a0 = C1 + C2 = 0 (using (2)) (3)

a1 = C1(
1+
√
5

2 ) + C2(
1−
√
5

2 ) = 1 (using (2)) (4)
By solving (3) and (4), we get C1 = 1√

5
and C2 = − 1√

5

The general solution of (1) becomes an = 1√
5
[(1+

√
5

2 )n − (1−
√
5

2 )n].

Q.1.2.3.5 If c and d are constants with d > 1 and an ≤ dabn
d
c + cn

then an ≤ cnlogd(n) + a1n.
Answer: We shall prove this by induction on n. For the base case, we
have that a1 ≤ 0 + a1.1. We assume that the theorem is true for all
n < k and we examine ak.
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ak ≤ dab k
d
c + ck (by the given condition)

≤ d[cbkdclogd(b
k
dc) + a1bkdc] + ck (by induction hypothesis)

≤ d[c(kd )logd(
k
d ) + a1(

k
d )] + ck (since bkdc ≤

k
d )

= cklogd(
k
d ) + a1k + ck = ck[logd(k)− 1] + a1k + ck

= cklogd(k) + a1k

Q.1.2.3.6 Solve the recurrence relation an = 4an−1 − 4an−2 + 3n with
a0 = 1 and a1 = 3.
Answer: an = 4an−1 − 4an−2 + 3n (5)
The homogeneous equation of (5) is an − 4an−1 + 4an−2 (6)
The characteristic polynomial of (6) is x2 − 4x+ 4 = 0, or (x− 2)2 = 0.
The characteristic roots of (6) are x1 = 2 and x2 = 2.
General solution of (6) is an = (k1 + k2n)2n, where k1 and k2 are
constants. (7)
Since non-homogeneous part is a polynomial in n of degree 1, so the
particular solution of (5) is also a polynomial in n of degree 1.
Let an = k3 + k4n be a particular solution. So, it satisfies (5).
k3 + k4n = 4(k3 + k4(n− 1))− (k3 + k4(n− 2)) + 3n
or, k3 + k4n = 4nk4 − 4k4 − 4nk4 + 8k4 + 3n
o,r k3 + k4n = 4k4 + 3n
Equating the coefficients of n1, n0 in both sides, we get
k3 = 4k4 and k4 = 3
k3 = 4k4 = 4.3 = 12.
Particular solution of (5) is an = 12 + 3n.
General solution of (5) is an = (k1 + k2n)2n + 12 + 3n.
a0 = 1⇒ k1 + 12 = 1 or k1 = −11
a1 = 3⇒ (k1 + k2).2 + 12 + 3 = 3 or, k2 = 5
an = (−11 + 5n)2n + 12 + 3n is the solution of (5).

Q.1.2.3.7 Solve an = 2an−1 + 3n2 + 2.3n, where a0 = 1.
Answer: an = 2an−1 + 3n2 + 2.3n (8)
The homogeneous equation of (8) is an − 2an−1 = 0 (9)
The characteristic polynomial of (9) is x− 2 = 0
The characteristic roots of (9) is x1 = 2
The general solution of (9) is an = k.2n, k is a constant
Note that the non-linear part of (8) is a combination of a polynomial
of degree 2 and an exponential function. So, the particular solution of
(8) will be a combination of second degree polynomial and an similar
exponential function.
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Let an = k0 + k1n + k2n
2 + k33

n, ki is a constant, i = 0, 1, 2, 3, . . . be a
solution. So, it satisfies (8).
k0 +k1n+k2n

2 +k33
n = 2(k0 +k1n−k1 +k2n

2−2k2n+k2 +k3.3
n−1) +

3n2 + 2.3n

Equating the constant term, we get
k0 = 2k0 − 2k1 + 2k2 or, k0 − 2k1 + 2k2 = 0 (10)
Equating the coefficient of n, we get k1 = 2k1 − 4k2 or, k1 = 4k2. (11)
Equating the coefficient of n2, we get k2 = 2k2 + 3 or, k2 = −3. (12)
Equating the coefficient of 3n, we have k3 = 2k3

3 + 2 or, k3 = 6 (13)
Solving [using (10), (11), (12) and (13)] we get
k0 = −18, k1 = −12, k2 = −3 and k3 = 6.
General solution of (8) is an = k.2n − 18− 12n− 3n2 + 6.3n.
Given that a0 = 1. So, k − 18 + 6 = 1 or, k=13.
an = 13.2n + 6.3n − 3n2 − 12n− 18.

Q.1.2.3.8 Solve using generating function an = 2an−1 + 7, where a0 = 0.
Answer: Here, an = 2an−1 + 7
or,
∑∞

n=1 anx
n =

∑∞
n=1 2an−1x

n +
∑∞

n=1 7xn, |x| < 1
or, G(x)− a0 = 2xG(x) + 7x(1− x)−1, where, G(x) =

∑∞
n=0 anx

n

or, G(x) = 7x(1− x)−1(1− 2x)−1

or, G(x) = 7x(1 + x+ x2 + . . . )(1 + 2x+ 22x2 + . . . )
an = co-efficient of xn = 7(2n−1 + 2n−2 + . . . ) = 7(2n − 1).

Q.1.2.3.9 Solve using generating function.
an = an−1 + an−2, a0 = a1 = 1
Answer: Now, an = an−1 + an−2
or,
∑∞

n=2 anx
n =

∑∞
n=2 an−1x

n +
∑∞

n=2 an−2x
n

or, G(x)−a0−a1x = x(G(x)−a0) +x2G(x), where, G(x) =
∑∞

n=0 anx
n

G(x)− x = xG(x) + x2G(x)
or, G(x)(1− x− x2) = x
or, G(x) = x(1− x− x2)−1
Now, 1

1−x−x2 = − 1
x2+x−1 = − 1

(x−α)(x−β)
We find the roots of equation: x2 + x− 1 = 0

The roots are x = −1±
√
5

2

So, α = −1+
√
5

2 , β = −1−
√
5

2
Now, 1

(x−α)(x−β) = 1
(α−β) [

1
x−α −

1
x−β ]

G(x) = − x√
5
[ 1
x−α −

1
x−β ] = − x√

5
[−(x− α)−1 + (x− β)−1]

G(x) = x√
5
[ 1α(1− x

α)−1 − 1
β (1− x

β )−1]

an = 1√
5
[ 1α .

1
αn−1 − 1

β .
1

βn−1 ] = 1√
5
( 1
αn − 1

βn )
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