Boolean Algebra

1. Boolean Algebra

Q.1.3.1.1 What is Boolean algebra?

Answer: Boolean algebra is an algebraic structure defined on a set of
elements B, together with two binary operators + and . having the fol-
lowing postulates.

1. Closure properties with respect to operators + and .

2. (i) An identity element with respect to +, designated by 0:
z2+0=0+z==x

(ii) An identity element with respect to . , designated by 1: .1 = 1.z =«
3. Commutative properties (i) z +y =y + z, (ii) 2.y = y.x

4. Distributive properties (i) z.(y + z) = (z.y) + (x.2),

(ii) 2 + (y.2) = (z +y).(z + 2)

5. For every element x € B, there exists an element ' € B, called the
complement of z, such that (i) x + 2’ = 1, and (ii) z.2’ = 0

6. There exists atleast two elements x,y € B such that x # y

Q.1.3.1.2 Define two-valued Boolean algebra.

Answer: A two-valued Boolean algebra is defined on a set of two ele-
ments, B = {0, 1}, with rules for the two binary operators + and . as
shown in the following operator tables (Table 1.1):

Tables 1.1: Operator tables of OR(+), AND(.) and NOT(')

T Y| xy T y|lxty

0 0] O 0 0 0 T |z
0 1[0 0 1 1 1
1 0 0 1 0 1 110
1 1] 1 1 1 1

These rules are exactly the same as the AND, OR, and NOT opera-
tions, respectively. The postulates stated in Q.Q.1.3.1.1 are valid on the
set B = {0, 1}, and the binary operations as defined in the above tables,
see Tables 1.1.

Q.1.3.1.3 Let < B, +, . > be a Boolean algebra. Prove that every
element in B has a unique complement.

Answer: Let a € B. If possible, let b and ¢ be two different complements
of element a.
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a+ b =1 [Complement law]

a+ ¢ =1 [Complement law]|

a.b = 0 [Complement law]

a.c =0 [Complement law]

Now, b = b.1 [Identity law]

= b.(a+ ¢) [From (1.2)]

= b.a + b.c [Distributive law]

= a.b+ b.c [Commutative law]

= 0+ b.c [Complement law, (1.3)]
= b.c [Identity law]

In a similar manner, ¢ = ¢.b = b.c [Commutative law]

Using (1.5) and (1.6), b = c.

Q.1.3.1.4 For every a € B, show that
(Jat+1=1

(ii) .0 =0

Answer: (i) a+1=1.(a+ 1) [Identity law]
= (a+d').(a + 1) [Complement law]

= a+ (da’.1) [Distributive law]

= a + d [Identity law]

=1 [Complement law]

(ii) a.0 = 0 + (a.0) [Identity law]
= (a.d') + (a.0) [Complement law]
= a.(a’ + 0) [Distributive law]

= a.a’ [Identity law]

= 0 [Complement law]

Q.1.3.1.5 State and prove absorption laws:
Answer: Absorption laws are stated below.
(a)z.(z+y) ==z
(b) x4+ (x.y) ==

Answer: (a) z.(z +vy) = (z.x) + (x.y) [Distributive law]

=z + (z.y) [see Tables 1.1]
= (z.1) + (x.y) [Identity law]
= z.(1 + y) [Distributive law]
= z.1 [Identity law]

= z [Identity law]

(b) x + (z.y) = (z.1) + (z.y) [Identity law]
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.(1+ y) [Distributive law]
(y + 1) [Commutative law]
1 [see Tables 1.1]

[Identity law]

88 88

Q.1.3.1.6 Prove that A+ A'B = A + B.

Answer: [Method 1]

RHS = A+ B = A+ 1.B [Ildendity law: 1.z = z]
= A+ (A+ A")B [Complement law: x + 2’ = 1]
= A+ AB + A'B [Distributive law]

= A1+ AB + A’'B [Identity law]

= A(1 + B) + A’'B [Distributive law]

= A.1+ A'B [see Tables 1.1]

= A+ A’'B [Idendity law: z.1 = z]

[Method 2]

LHS = A+ A'B = (A+ A")(A + B) [Distributive law]
= 1.(A+ B) [Complement law: x + 2’ = 1]

= A + B [Identity law]

Q.1.3.1.7 Prove that AB+ A'C + BC = AB+ A'C.
Answer: AB+ A'C' + BC

= AB+ A'C + (A+ A")BC [Complement law: z 4+ 2/ = 1]
= AB+ A'C+ ABC + A'BC

= AB+ ABC + A'C + A'BC [Commutative law]

= AB(1+ C)+ A'C + A’BC [Distributive law]

= AB+ A'C + A'BC [see Tables 1.1: 1 + x = 1]

= AB + A'C + A'CB [Commutative law]

= AB + A’C(1 + B) [Distributive law]

= AB + A'C [see Tables 1.1: 1+ z =1]

Q.1.3.1.8 Simplify the Boolean expression represented by truth Table
1.2.

Answer: From the truth table, we get

fz,yy,2) =2y 2 + 2'y2 + xy'z + zy2’ + zyz.

A minterm is added, if f gets 1 for the minterm.

We make algebraic simplification of f as given below.

f(x,y,2) = a'y'2" + 2’y + xy'z + vy + ayz

=2'2'(y +y) + 2y'z + zy(2' + z) [Distributive law]

=22 +ayz+ 2y

= 2’2 4+ 2(y'2 + y) [Distributive law]
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2. Order Relations and Lattices

Q.1.3.2.1 What is poset? Give examples.

Answer: Let R be a relation on set S. R is called a partially ordered
set (poset) if R is reflexive, antisymmetric, and transitive. Examples of
a few posets are given below:

(i) Let N be the set of natural numbers. Consider the relation < on N.
a < a, for a € N. Thus, < is reflexive.

If a <band b < athen a =b. Thus, < is antisymmetric.

Also, a < b and b < ¢ imply that a < ¢. So, < is transitive.

Thus, (N, <) is a poset.

(ii) Another example of poset is a collection of people ordered by ge-
nealogical descendancy. Some pairs of people bear the descendant-ancestor
relationship, but other pairs of people are incomparable, with neither be-
ing a descendant of the other.

(iii) A trivial example of a poset is (S,=), where S is any set. Any set
can be partially ordered by equality.

Q.1.3.2.2 Let ’ |” be the divisibility operation on R — {0}. Show that
" | is not a poset.
Answer: Relation ’ |’ is not antisymmetric, since 2 | —2 and —2 |2, but

24 —2.

Q.1.3.2.3 Define the following terms: total ordering, strict ordering, in-
comparability, chain.

Answer: Let (X, <) be a partial ordered set.

(i) It is total ordered if and only if either a < b, or b < a, Va,b € X.
Total ordering is also called linear ordering.

(ii) It is strictly ordered (<) if and only if a < b and a # b,a,b € X.
(iii) For a,b € X, a and b are incomparable, when neither a < b, nor
b<a.

(iv) C C X is a chain if and only if < induces a total ordering on C.

Q.1.3.2.4 Identify the relations on X = {1,2,3,4}, that are not par-
tially otdered.

R ={(1,1),(1,2),(3,3),(4,4),(1,3),(3,4),(1,4),(2,2)}
R2:{(171)>(2a2)7(37 1)7( )a(172)}

Ry ={(1,1),(2,2),(3,3),(4,4),(1,3),(2,4)}
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Answer: The binary relations Ry and Rs are partial orders. But, R is
not a partial order.

4 € X. But (4,4) ¢ Ra. So, Ry is not reflexive.

(3,1),(1,3) € Re. But, 1 # 3. Then R5 is not antisymmetric.
(3,1),(1,3) € Ry. But, (3,3) ¢ Re. Then R5 is not transitive.

In fact, none of the conditions is satisfied by Ra.

Q.1.3.2.5 What is cover? Give an example.

Answer: Let X be a set with a partial order <. Let < be the relation
on X such that = < y if and only if x <y and = # y.

Let z and y be elements of X. Then y covers z, written as x <y, if z < y
and there is no element z such that x < z < y. Equivalently, y covers x
if the interval [z,y] is the two-element set {x,y}.

Let N ={1,2,3,...} be ordered by divisibility ( | ). Then 15 is covered
by 105. But, 14 is not covered by 84, since 14 | 42 | 84.

Q.1.3.2.6 Consider the set S = {1,3,5,7,9}. Find all comparable and
non-comparable pairs of elements when S is ordered by divisibility.
Answer: Comparable pairs on S are (1, 3), (1, 5), (1, 7), (1, 9), (3, 9).
Non-comparable pairs are (3, 5), (3, 7), (5, 7), (5, 9), (7, 9).

Note that elements = and y are non-comparable if neither = | y nor y | z.

Q.1.3.2.7 Let X = (1,2,3,...) be ordered by divisibility. Check whether
the subset (2, 4, 8, 12) is linearly ordered.

Answer: A set S is said to linearly ordered if every pair of elements is
comparable. A linearly ordered set is also called totally ordered. Here
the pair (8, 12) is not comparable, since neither 8 divides 12 nor 12 di-
vides 8. Thus, the given set X is not linearly ordered.

Q.1.3.2.8 Let N be the set of natural number ordered by <. Thus,
(a,b) < (a/ V) if a < a' and b < V. Let us define an order < on N x N
such that (a,b) < (a/,V'), if (a <a’ and b < V'), or (a < a’ and b < V).
Order the pairs (i) (1, 4) and (1, 3), (ii) (1, 4) and (1, 5).

Answer: (i) (1,4) > (1,3), since (1 > 1) and (4 > 3)

(i) (1,4) < (1,5), since (1 < 1) and (4 < 5)

Q.1.3.2.9 What is anti-chain? Give examples.

Answer: Let (X, <) be a partial ordered set. D C X is an anti-chain if
every pair of elements in D are incomparable.

The following sets are antichains based on of subset relationship:
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() {{1}, {2}, {3}}
(i) {{1,2},{2,3},{1,3}}

Q.1.3.2.10 What is product partial order?
Answer: A partial order < defined on the cartesian product S x T is
known as product partial order, where (5, <) and (7, <) are posets.

Q.1.3.2.11 Explain the concept of Hasse diagram with help of an ex-
ample.

Answer: A Hasse diagram is a graphical representation of a partially or-
dered set. The graph is displayed using the cover relation of the partially
ordered set with an implied upward orientation. A point is drawn for
each element of the poset, and line segments are drawn between these
points according to the following rules:

(i) If z < y in the poset, then the point corresponding to = appears lower
in the drawing than the point corresponding to .

(ii) A line segment between the points corresponding to any two elements
z and y of the poset is included in the drawing if and only if = covers y,
or y covers .

Consider the set X = {1,2,3}. Let the power set of X be p(X). Then
(p(X), Q) is a poset as depicted using Hasse diagram in Fig. 2.1.

@‘@’@
Q12310
Figure 2.1: Hasse diagram of (p(X), Q)
Here, p(X) = {¢, {1}, {2}, {3}, {1,2},{1,3},{2,3}, {1,2,3}}.

Q.1.3.2.12 Draw Hasse diagram of poset containing factors of 60, par-
tially ordered by divisibility.
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3. Fibonacci Numbers

Q.1.3.3.1 Define Fibonacci series. Find 10-th Fibonacci number.
Answer: The Fibonacci series has been defined by the following recur-
rence relation: Fj,1 = F), + F,,—1 with base conditions: F} =1, Fy = 1.
Based on the above recurrence relation and base conditions, we compute
the following numbers.

F3:F2+F1:1—|-1:2

Fy=F3+F,=2+1=3

F5:F4+F3:3+2:5

Fs=Fs+F,=5+3=8

Fr=Fs+F5=84+5=13

Fs=F;+F;=134+8=21

Fo=Fs+F;,=214+12=34

Flg=Fy+ Fs=34+21 =55

Q.1.3.3.2 The Fibonacci numbers can be extended to zero and nega-
tive indices using the relation F,, = Fj, 1o — Fj,+1. Calculate Fibonacci
numbers from Fy to F_5. Find a general formula for £, in terms of F,.
Prove your result.

Answer: Fibonacci numbers from Fy to F_5 are given below:
Fhb=F-F=0

Fi1=FR—-F=1-0=1

Fo=F-F=0-1=-1

F3s=F1—F=1—(-1)=2

F, ,=Fs—F 3=-1-2=-3

Fs=F3—F4=2—(-3)=5

It can be shown that F_, = (—1)"*'F,. We shall prove the formula
using mathematical induction on n.

Based on the above calculations, F_; =1 = (—1)**1 7.
Fo=-1=(-1)*"'"F[Q.1.3.3.1]

So, the formula holds true for n =1 and n = 2.

We assume that the formula is true for n < k. We shall prove that the
formula is true for n = k + 1.

Now, F,(k+1) = F,(k+1)+2 — F,(k+1)+1 [From definition]

=F_(4-1) — F_j = (-1)FFj_1 — (=1)¥*'F}; [Induction hypothesis]

= (=1)**2(Fj-1 + Fy)

= (—=1)*+D+1E | [From recurrence relation]
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Q.1.3.3.3 Obtain the generating function of Fibonacci numbers.
Answer: The generating function is given by f(z) = > " Fpa™.
Then f(z) = Fiz + Fa? + F3a® + Fya* + ...

rf(z) = Fla® + Foa® + Fya* + Fya® + ...

22f(x) = Fa® + Foa* + Fya® + Fyab + ...

Now, (1 -z —2?)f(z) = f(2) — 2 f(2) - 2° f(2)

We apply the facts that F; = F» =1 and Fj,41 — F,, — Fj,—1 = 0.
Then f(z) — xf(x) — 22f(x) = z. Thus, (1 -z —2?)f(z) ==
or, f(z) = 7=

Q.1.3.3.4 State some properties of Fibonacci numbers.
Answer: Some interesting properties of Fibonacci numbers are given be-
low:

Property 1: Fy +Fo+ F3+---+ F, = Fhi0—1 (3.1)
Proof: F1 = F3 — F2

Fy=F,— F;3

F3=F5—F,

Fn :Fn+1 - Fy
Fn:Fn+2_Fn+1
By adding, Z?:l Fl = Fn+2 — F2 = Fn+2 — 1, since F2 =1.

Property 2: Fy + F5+ F5+ -+ -+ Fy,—1 = Fy), (32)
Proof: F} = Iy

Fs=F,— I

Fs = Fs — Fy

Fon—1 = Fop — Fop—2
By adding, we gat Y ;| Fpi—1 = Foy

Property 3: Fo + Fy +--- + Fo, = F2n+1 -1 (33)
Proof: From(3.1), 2" F; = Foppo — 1 (3.4)
(3.4) — (3.2) =

Sorq Foi = Foppg —1— Fyy
= Fopyo — Iy, — 1
= Fopy1 — 1

Corollary: Fy — Fo + F3 — Fy+---+ Fo,_1 — Fo,
= —Fpp1+1 (3.5)
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Proof: It follows from (3.2) and (3.3).

Corollary: Fy — Fo + Fs — Fy+ -+ — Fop + Fopy1 = Fop + 1 (3.6)
Proof: By adding Fs, 1 to both sides of (3.5), the result follows.
Corollary: Fy — Fy + F3 — Fy + ... (=1)""E,

= ()" E, 1 +1 (3.7)
Proof: Combining (3.5) and (3.6), the result follows.

Property 4: Ff + Fy + Fi + -+ F2 = F,F, 1 (3.8)
Proof: We note that FyFyy1 — Fy—1Fy = Fi(Fyy1 — Fr—1) = F?

F12 = F1F2 (as F1 = F2 = 1)

F} = [hF— 1By

F? = F3F), — FyFy

Fﬁ :FnFn—l-l —F, 1 F,
By adding, we get > i F? = Fy,Fi1

Q.1.3.3.5 Solve the following recurrence relation.

Up = Up—1 + Up—2 (39)
where, u1 = ug =1

Answer: Using (3.9), Y-0% supz = 320 s up12™ + 300 4 up0z™

Let G(v) = uy + ugw +uzx? + -« + up_ 12" 2 +upz™ 1+ ...
Therefore, £ 300 s upz™ 1 = 2232 sap_ 12" 2+ 23300 2 ap_0a™ 3
or, G(x) — u; — usxr = x[G(x) — u1] + 2°G(z), for x # 0

or, G(x)[1 —x —2?| =uy +usr —wz =u; =1 as ug = ug = 1
or, G(z) = (1—:1: %)t = — xl o
or, G( ) = W’ where «, 3 are the roots of equation 1 —z—z2 = 0
orz’4+x—-1=0
ie. a= ,1+\/5 B = ’15\/5
1 1
or, G(ﬂf) Ot [:f_ia — Lffﬂ]
or, G(z) = — =15 — 723
or, G(x) =+ [L(1— £)71 = 51— £)7] (3.10)
(3.10)is an identity.
Then, u,, = co-efficient of 2"~ Lin the right side of (3.10)
U :L[l#,l 1 ]:L[L,L}
n \/g o an—1 /B'ﬁn—l \/g am Bn
_ 1L preat) _ anp
S0, un = el g ] =

where af = 1((—1)? — (v/5)?) = -1
n_gn (1+\/3)n_(1—\/5)n
A= 2 (3.11)

Formula (3.11) is called Binet’s formula in honour of the mathematician

Thus, u, = <
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