
Boolean Algebra

1. Boolean Algebra

Q.1.3.1.1 What is Boolean algebra?
Answer: Boolean algebra is an algebraic structure defined on a set of
elements B, together with two binary operators + and . having the fol-
lowing postulates.
1. Closure properties with respect to operators + and .
2. (i) An identity element with respect to +, designated by 0:
x+ 0 = 0 + x = x
(ii) An identity element with respect to . , designated by 1: x.1 = 1.x = x
3. Commutative properties (i) x+ y = y + x, (ii) x.y = y.x
4. Distributive properties (i) x.(y + z) = (x.y) + (x.z),
(ii) x+ (y.z) = (x+ y).(x+ z)
5. For every element x ∈ B, there exists an element x′ ∈ B, called the
complement of x, such that (i) x+ x′ = 1, and (ii) x.x′ = 0
6. There exists atleast two elements x, y ∈ B such that x 6= y

Q.1.3.1.2 Define two-valued Boolean algebra.
Answer: A two-valued Boolean algebra is defined on a set of two ele-
ments, B = {0, 1}, with rules for the two binary operators + and . as
shown in the following operator tables (Table 1.1):

Tables 1.1: Operator tables of OR(+), AND(.) and NOT(′)

x y x.y

0 0 0
0 1 0
1 0 0
1 1 1

x y x+ y

0 0 0
0 1 1
1 0 1
1 1 1

x x ′

0 1
1 0

These rules are exactly the same as the AND, OR, and NOT opera-
tions, respectively. The postulates stated in Q.Q.1.3.1.1 are valid on the
set B = {0, 1}, and the binary operations as defined in the above tables,
see Tables 1.1.

Q.1.3.1.3 Let < B, +, . > be a Boolean algebra. Prove that every
element in B has a unique complement.
Answer: Let a ∈ B. If possible, let b and c be two different complements
of element a.
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a+ b = 1 [Complement law] (1.1)
a+ c = 1 [Complement law] (1.2)
a.b = 0 [Complement law] (1.3)
a.c = 0 [Complement law] (1.4)
Now, b = b.1 [Identity law]
= b.(a+ c) [From (1.2)]
= b.a+ b.c [Distributive law]
= a.b+ b.c [Commutative law]
= 0 + b.c [Complement law, (1.3)]
= b.c [Identity law] (1.5)
In a similar manner, c = c.b = b.c [Commutative law] (1.6)
Using (1.5) and (1.6), b = c.

Q.1.3.1.4 For every a ∈ B, show that
(i) a+ 1 = 1
(ii) a.0 = 0
Answer: (i) a+ 1 = 1.(a+ 1) [Identity law]
= (a+ a′).(a+ 1) [Complement law]
= a+ (a′.1) [Distributive law]
= a+ a′ [Identity law]
= 1 [Complement law]

(ii) a.0 = 0 + (a.0) [Identity law]
= (a.a′) + (a.0) [Complement law]
= a.(a′ + 0) [Distributive law]
= a.a′ [Identity law]
= 0 [Complement law]

Q.1.3.1.5 State and prove absorption laws:
Answer: Absorption laws are stated below.
(a) x.(x+ y) = x
(b) x+ (x.y) = x
Answer: (a) x.(x+ y) = (x.x) + (x.y) [Distributive law]
= x+ (x.y) [see Tables 1.1]
= (x.1) + (x.y) [Identity law]
= x.(1 + y) [Distributive law]
= x.1 [Identity law]
= x [Identity law]

(b) x+ (x.y) = (x.1) + (x.y) [Identity law]
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= x.(1 + y) [Distributive law]
= x.(y + 1) [Commutative law]
= x.1 [see Tables 1.1]
= x [Identity law]

Q.1.3.1.6 Prove that A+A′B = A+B.
Answer: [Method 1]
RHS = A+B = A+ 1.B [Idendity law: 1.x = x]
= A+ (A+A′)B [Complement law: x+ x′ = 1]
= A+AB +A′B [Distributive law]
= A.1 +AB +A′B [Identity law]
= A(1 +B) +A′B [Distributive law]
= A.1 +A′B [see Tables 1.1]
= A+A′B [Idendity law: x.1 = x]
[Method 2]
LHS = A+A′B = (A+A′)(A+B) [Distributive law]
= 1.(A+B) [Complement law: x+ x′ = 1]
= A+B [Identity law]

Q.1.3.1.7 Prove that AB +A′C +BC = AB +A′C.
Answer: AB +A′C +BC
= AB +A′C + (A+A′)BC [Complement law: x+ x′ = 1]
= AB +A′C +ABC +A′BC
= AB +ABC +A′C +A′BC [Commutative law]
= AB(1 + C) +A′C +A′BC [Distributive law]
= AB +A′C +A′BC [see Tables 1.1: 1 + x = 1]
= AB +A′C +A′CB [Commutative law]
= AB +A′C(1 +B) [Distributive law]
= AB +A′C [see Tables 1.1: 1 + x = 1]

Q.1.3.1.8 Simplify the Boolean expression represented by truth Table
1.2.
Answer: From the truth table, we get
f(x, y, z) = x′y′z′ + x′yz′ + xy′z + xyz′ + xyz.
A minterm is added, if f gets 1 for the minterm.
We make algebraic simplification of f as given below.
f(x, y, z) = x′y′z′ + x′yz′ + xy′z + xyz′ + xyz
= x′z′(y′ + y) + xy′z + xy(z′ + z) [Distributive law]
= x′z′ + xy′z + xy
= x′z′ + x(y′z + y) [Distributive law]
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2. Order Relations and Lattices

Q.1.3.2.1 What is poset? Give examples.
Answer: Let R be a relation on set S. R is called a partially ordered
set (poset) if R is reflexive, antisymmetric, and transitive. Examples of
a few posets are given below:
(i) Let N be the set of natural numbers. Consider the relation ≤ on N .
a ≤ a, for a ∈ N . Thus, ≤ is reflexive.
If a ≤ b and b ≤ a then a = b. Thus, ≤ is antisymmetric.
Also, a ≤ b and b ≤ c imply that a ≤ c. So, ≤ is transitive.
Thus, (N,≤) is a poset.
(ii) Another example of poset is a collection of people ordered by ge-
nealogical descendancy. Some pairs of people bear the descendant-ancestor
relationship, but other pairs of people are incomparable, with neither be-
ing a descendant of the other.
(iii) A trivial example of a poset is (S,=), where S is any set. Any set
can be partially ordered by equality.

Q.1.3.2.2 Let ’ |’ be the divisibility operation on R − {0}. Show that
’ |’ is not a poset.
Answer: Relation ’ |’ is not antisymmetric, since 2 | − 2 and −2 |2, but
2 6= −2.

Q.1.3.2.3 Define the following terms: total ordering, strict ordering, in-
comparability, chain.
Answer: Let (X,≤) be a partial ordered set.
(i) It is total ordered if and only if either a ≤ b, or b ≤ a, ∀a, b ∈ X.
Total ordering is also called linear ordering.
(ii) It is strictly ordered (<) if and only if a ≤ b and a 6= b, a, b ∈ X.
(iii) For a, b ∈ X, a and b are incomparable, when neither a ≤ b, nor
b ≤ a.
(iv) C ⊆ X is a chain if and only if ≤ induces a total ordering on C.

Q.1.3.2.4 Identify the relations on X = {1, 2, 3, 4}, that are not par-
tially otdered.
R1 = {(1, 1), (1, 2), (3, 3), (4, 4), (1, 3), (3, 4), (1, 4), (2, 2)}
R2 = {(1, 1), (2, 2), (3, 1), (1, 3), (1, 2)}
R3 = {(1, 1), (2, 2), (3, 3), (4, 4), (1, 3), (2, 4)}
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Answer: The binary relations R1 and R3 are partial orders. But, R2 is
not a partial order.
4 ∈ X. But (4, 4) /∈ R2. So, R2 is not reflexive.
(3, 1), (1, 3) ∈ R2. But, 1 6= 3. Then R2 is not antisymmetric.
(3, 1), (1, 3) ∈ R2. But, (3, 3) /∈ R2. Then R2 is not transitive.
In fact, none of the conditions is satisfied by R2.

Q.1.3.2.5 What is cover? Give an example.
Answer: Let X be a set with a partial order ≤. Let < be the relation
on X such that x < y if and only if x ≤ y and x 6= y.
Let x and y be elements of X. Then y covers x, written as xly, if x < y
and there is no element z such that x < z < y. Equivalently, y covers x
if the interval [x, y] is the two-element set {x, y}.
Let N = {1, 2, 3, . . . } be ordered by divisibility ( | ). Then 15 is covered
by 105. But, 14 is not covered by 84, since 14 | 42 | 84.

Q.1.3.2.6 Consider the set S = {1, 3, 5, 7, 9}. Find all comparable and
non-comparable pairs of elements when S is ordered by divisibility.
Answer: Comparable pairs on S are (1, 3), (1, 5), (1, 7), (1, 9), (3, 9).
Non-comparable pairs are (3, 5), (3, 7), (5, 7), (5, 9), (7, 9).
Note that elements x and y are non-comparable if neither x | y nor y | x.

Q.1.3.2.7 Let X = (1, 2, 3, . . . ) be ordered by divisibility. Check whether
the subset (2, 4, 8, 12) is linearly ordered.
Answer: A set S is said to linearly ordered if every pair of elements is
comparable. A linearly ordered set is also called totally ordered. Here
the pair (8, 12) is not comparable, since neither 8 divides 12 nor 12 di-
vides 8. Thus, the given set X is not linearly ordered.

Q.1.3.2.8 Let N be the set of natural number ordered by ≤. Thus,
(a, b) ≤ (a′, b′) if a ≤ a′ and b ≤ b′. Let us define an order < on N ×N
such that (a, b) < (a′, b′), if (a ≤ a′ and b < b′), or (a < a′ and b ≤ b′).
Order the pairs (i) (1, 4) and (1, 3), (ii) (1, 4) and (1, 5).
Answer: (i) (1, 4) > (1, 3), since (1 ≥ 1) and (4 > 3)
(ii) (1, 4) < (1, 5), since (1 ≤ 1) and (4 < 5)

Q.1.3.2.9 What is anti-chain? Give examples.
Answer: Let (X,≤) be a partial ordered set. D ⊆ X is an anti-chain if
every pair of elements in D are incomparable.
The following sets are antichains based on of subset relationship:
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(i) {{1}, {2}, {3}}
(ii) {{1, 2}, {2, 3}, {1, 3}}

Q.1.3.2.10 What is product partial order?
Answer: A partial order ≤ defined on the cartesian product S × T is
known as product partial order, where (S,≤) and (T,≤) are posets.

Q.1.3.2.11 Explain the concept of Hasse diagram with help of an ex-
ample.
Answer: A Hasse diagram is a graphical representation of a partially or-
dered set. The graph is displayed using the cover relation of the partially
ordered set with an implied upward orientation. A point is drawn for
each element of the poset, and line segments are drawn between these
points according to the following rules:
(i) If x < y in the poset, then the point corresponding to x appears lower
in the drawing than the point corresponding to y.
(ii) A line segment between the points corresponding to any two elements
x and y of the poset is included in the drawing if and only if x covers y,
or y covers x.
Consider the set X = {1, 2, 3}. Let the power set of X be ρ(X). Then
(ρ(X),⊆) is a poset as depicted using Hasse diagram in Fig. 2.1.

Figure 2.1: Hasse diagram of (ρ(X),⊆)

Here, ρ(X) = {φ, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

Q.1.3.2.12 Draw Hasse diagram of poset containing factors of 60, par-
tially ordered by divisibility.
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3. Fibonacci Numbers

Q.1.3.3.1 Define Fibonacci series. Find 10-th Fibonacci number.
Answer: The Fibonacci series has been defined by the following recur-
rence relation: Fn+1 = Fn + Fn−1 with base conditions: F1 = 1, F2 = 1.
Based on the above recurrence relation and base conditions, we compute
the following numbers.
F3 = F2 + F1 = 1 + 1 = 2
F4 = F3 + F2 = 2 + 1 = 3
F5 = F4 + F3 = 3 + 2 = 5
F6 = F5 + F4 = 5 + 3 = 8
F7 = F6 + F5 = 8 + 5 = 13
F8 = F7 + F6 = 13 + 8 = 21
F9 = F8 + F7 = 21 + 12 = 34
F10 = F9 + F8 = 34 + 21 = 55

Q.1.3.3.2 The Fibonacci numbers can be extended to zero and nega-
tive indices using the relation Fn = Fn+2 − Fn+1. Calculate Fibonacci
numbers from F0 to F−5. Find a general formula for F−n in terms of Fn.
Prove your result.
Answer: Fibonacci numbers from F0 to F−5 are given below:
F0 = F2 − F1 = 0
F−1 = F1 − F0 = 1− 0 = 1
F−2 = F0 − F1 = 0− 1 = −1
F−3 = F−1 − F−2 = 1− (−1) = 2
F−4 = F−2 − F−3 = −1− 2 = −3
F−5 = F−3 − F−4 = 2− (−3) = 5
It can be shown that F−n = (−1)n+1Fn. We shall prove the formula
using mathematical induction on n.
Based on the above calculations, F−1 = 1 = (−1)1+1F1.
F−2 = −1 = (−1)2+1F2 [Q.1.3.3.1]
So, the formula holds true for n = 1 and n = 2.
We assume that the formula is true for n ≤ k. We shall prove that the
formula is true for n = k + 1.
Now, F−(k+1) = F−(k+1)+2 − F−(k+1)+1 [From definition]

= F−(k−1) − F−k = (−1)kFk−1 − (−1)k+1Fk [Induction hypothesis]

= (−1)k+2(Fk−1 + Fk)
= (−1)(k+1)+1Fk+1 [From recurrence relation]
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Q.1.3.3.3 Obtain the generating function of Fibonacci numbers.
Answer: The generating function is given by f(x) =

∑∞
n=1 Fnx

n.
Then f(x) = F1x+ F2x

2 + F3x
3 + F4x

4 + . . .
xf(x) = F1x

2 + F2x
3 + F3x

4 + F4x
5 + . . .

x2f(x) = F1x
3 + F2x

4 + F3x
5 + F4x

6 + . . .
Now, (1− x− x2)f(x) = f(x)− xf(x)− x2f(x)
We apply the facts that F1 = F2 = 1 and Fn+1 − Fn − Fn−1 = 0.
Then f(x)− xf(x)− x2f(x) = x. Thus, (1− x− x2)f(x) = x
or, f(x) = x

1−x−x2 .

Q.1.3.3.4 State some properties of Fibonacci numbers.
Answer: Some interesting properties of Fibonacci numbers are given be-
low:
Property 1: F1 + F2 + F3 + · · ·+ Fn = Fn+2 − 1 (3.1)
Proof: F1 = F3 − F2

F2 = F4 − F3

F3 = F5 − F4

. . .
Fn−1 = Fn+1 − Fn
Fn = Fn+2 − Fn+1

By adding,
∑n

i=1 Fi = Fn+2 − F2 = Fn+2 − 1, since F2 = 1.

Property 2: F1 + F3 + F5 + · · ·+ F2n−1 = F2n (3.2)
Proof: F1 = F2

F3 = F4 − F2

F5 = F6 − F4

. . .
F2n−1 = F2n − F2n−2

By adding, we gat
∑n

i=1 F2i−1 = F2n

Property 3: F2 + F4 + · · ·+ F2n = F2n+1 − 1 (3.3)
Proof: From(3.1),

∑2n
i=1 Fi = F2n+2 − 1 (3.4)

(3.4)− (3.2)⇒∑n
i=1 F2i = F2n+2 − 1− F2n

= F2n+2 − F2n − 1
= F2n+1 − 1

Corollary: F1 − F2 + F3 − F4 + · · ·+ F2n−1 − F2n

= −F2n−1 + 1 (3.5)
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Proof: It follows from (3.2) and (3.3).
Corollary: F1 − F2 + F3 − F4 + · · · − F2n + F2n+1 = F2n + 1 (3.6)
Proof: By adding F2n+1 to both sides of (3.5), the result follows.
Corollary: F1 − F2 + F3 − F4 + . . . (−1)n+1Fn
= (−1)n+1Fn−1 + 1 (3.7)
Proof: Combining (3.5) and (3.6), the result follows.

Property 4: F 2
1 + F 2

2 + F 2
3 + · · ·+ F 2

n = FnFn+1 (3.8)
Proof: We note that FkFk+1 − Fk−1Fk = Fk(Fk+1 − Fk−1) = F 2

k

F 2
1 = F1F2 (as F1 = F2 = 1)
F 2

2 = F2F3 − F1F2

F 2
3 = F3F4 − F2F3

. . .
F 2
n = FnFn+1 − Fn−1Fn

By adding, we get
∑n

i=1 F
2
i = FnFn+1

Q.1.3.3.5 Solve the following recurrence relation.
un = un−1 + un−2 (3.9)
where, u1 = u2 = 1
Answer: Using (3.9),

∑∞
n=3 unx

h =
∑∞

n=3 un−1x
n +

∑∞
n=3 un−2x

n

Let G(x) = u1 + u2x+ u3x
2 + · · ·+ un−1x

n−2 + unx
n−1 + . . .

Therefore, x
∑∞

n=3 unx
n−1 = x2

∑∞
n=3 an−1x

n−2 + x3
∑∞

n=3 an−2x
n−3

or, G(x)− u1 − u2x = x[G(x)− u1] + x2G(x), for x 6= 0
or, G(x)[1− x− x2] = u1 + u2x− u1x = u1 = 1 as u2 = u2 = 1
or, G(x) = (1− x− x2)−1 = 1

1−x−x2
or, G(x) = 1

(x−α)(x−β) , where α, β are the roots of equation 1−x−x2 = 0

or x2 + x− 1 = 0
i.e. α = −1+

√
5

2 , β = −1−
√

5
2

or, G(x) = − 1
α−β [ 1

x−α −
1

x−β ]

or, G(x) = − 1√
5
[ 1
x−α −

1
x−β ]

or, G(x) = + 1√
5
[ 1
α(1− x

α)−1 − 1
β (1− x

β )−1] (3.10)

(3.10)is an identity.
Then, un = co-efficient of xn−1in the right side of (3.10)
un = 1√

5
[ 1
α .

1
αn−1 − 1

β .
1

βn−1 ] = 1√
5
[ 1
αn −

1
βn ]

So, un = 1√
5
[β
n−αn

(αβ)n ] = αn−βn√
5
,

where αβ = 1
4((−1)2 − (

√
5)2) = −1

Thus, un = αn−βn√
5

=
( 1+
√
5

2
)n−( 1−

√
5

2
)n√

5
(3.11)

Formula (3.11) is called Binet’s formula in honour of the mathematician
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