1. Boolean Algebra

Q.1.3.1.1 What is Boolean algebra?

Answer: Boolean algebra is an algebraic structure defined on a set of elements B, together with two binary operators + and . having the following postulates.

1. Closure properties with respect to operators + and .
2. (i) An identity element with respect to + , designated by 0 :
$x+0=0+x=x$
(ii) An identity element with respect to ., designated by 1: $x .1=1 \cdot x=x$ 3. Commutative properties (i) $x+y=y+x$, (ii) $x \cdot y=y \cdot x$
3. Distributive properties (i) $x \cdot(y+z)=(x . y)+(x . z)$,
(ii) $x+(y . z)=(x+y) \cdot(x+z)$
4. For every element $x \in B$, there exists an element $x^{\prime} \in B$, called the complement of x, such that (i) $x+x^{\prime}=1$, and (ii) $x \cdot x^{\prime}=0$
5. There exists atleast two elements $x, y \in B$ such that $x \neq y$
Q.1.3.1.2 Define two-valued Boolean algebra.

Answer: A two-valued Boolean algebra is defined on a set of two elements, $B=\{0,1\}$, with rules for the two binary operators + and . as shown in the following operator tables (Table 1.1):

Tables 1.1: Operator tables of $\operatorname{OR}(+), \operatorname{AND}($.$) and \operatorname{NOT}\left({ }^{\prime}\right)$

x	y	$x . y$
0	0	0
0	1	0
1	0	0
1	1	1

x	y	$x+y$
0	0	0
0	1	1
1	0	1
1	1	1

x	x^{\prime}
0	1
1	0

These rules are exactly the same as the AND, OR, and NOT operations, respectively. The postulates stated in Q.Q.1.3.1.1 are valid on the set $B=\{0,1\}$, and the binary operations as defined in the above tables, see Tables 1.1.
Q.1.3.1.3 Let $<B,+, .>$ be a Boolean algebra. Prove that every element in B has a unique complement.
Answer: Let $a \in B$. If possible, let b and c be two different complements of element a.
$a+b=1$ [Complement law]
$a+c=1$ [Complement law]
$a . b=0$ [Complement law]
$a . c=0$ [Complement law]
Now, $b=b .1$ [Identity law]
$=b .(a+c)$ [From (1.2)]
$=b . a+b . c[$ Distributive law]
$=a . b+b . c$ [Commutative law]
$=0+b . c$ [Complement law, (1.3)]
$=b . c$ [Identity law]
In a similar manner, $c=c . b=b . c$ [Commutative law]
Using (1.5) and (1.6), $b=c$.
Q.1.3.1.4 For every $a \in B$, show that
(i) $a+1=1$
(ii) $a .0=0$

Answer: (i) $a+1=1 .(a+1)$ [Identity law]
$=\left(a+a^{\prime}\right) \cdot(a+1)$ [Complement law]
$=a+\left(a^{\prime} .1\right)$ [Distributive law]
$=a+a^{\prime}$ [Identity law]
$=1$ [Complement law]
(ii) $a .0=0+(a .0)$ [Identity law]
$=\left(a . a^{\prime}\right)+(a .0)$ [Complement law]
$=a \cdot\left(a^{\prime}+0\right)$ [Distributive law]
$=a \cdot a^{\prime}$ [Identity law]
$=0$ [Complement law]
Q.1.3.1.5 State and prove absorption laws:

Answer: Absorption laws are stated below.
(a) $x \cdot(x+y)=x$
(b) $x+(x . y)=x$

Answer: (a) $x .(x+y)=(x . x)+(x . y)$ [Distributive law]
$=x+(x . y)$ [see Tables 1.1]
$=(x .1)+(x . y)$ [Identity law]
$=x \cdot(1+y)$ [Distributive law]
$=x .1$ [Identity law]
$=x$ [Identity law]
(b) $x+(x . y)=(x .1)+(x . y)$ [Identity law]
$=x \cdot(1+y)$ [Distributive law]
$=x \cdot(y+1)$ [Commutative law]
$=x .1[$ see Tables 1.1]
$=x$ [Identity law]
Q.1.3.1.6 Prove that $A+A^{\prime} B=A+B$.

Answer: [Method 1]
RHS $=A+B=A+1 . B$ [Idendity law: $1 . x=x$]
$=A+\left(A+A^{\prime}\right) B\left[\right.$ Complement law: $\left.x+x^{\prime}=1\right]$
$=A+A B+A^{\prime} B$ [Distributive law]
$=A .1+A B+A^{\prime} B$ [Identity law]
$=A(1+B)+A^{\prime} B$ [Distributive law]
$=A .1+A^{\prime} B$ [see Tables 1.1]
$=A+A^{\prime} B$ [Idendity law: $x .1=x$]
[Method 2]
LHS $=A+A^{\prime} B=\left(A+A^{\prime}\right)(A+B)$ [Distributive law]
$=1 .(A+B)$ [Complement law: $\left.x+x^{\prime}=1\right]$
$=A+B$ [Identity law]
Q.1.3.1.7 Prove that $A B+A^{\prime} C+B C=A B+A^{\prime} C$.

Answer: $A B+A^{\prime} C+B C$
$=A B+A^{\prime} C+\left(A+A^{\prime}\right) B C$ [Complement law: $\left.x+x^{\prime}=1\right]$
$=A B+A^{\prime} C+A B C+A^{\prime} B C$
$=A B+A B C+A^{\prime} C+A^{\prime} B C$ [Commutative law]
$=A B(1+C)+A^{\prime} C+A^{\prime} B C$ [Distributive law]
$=A B+A^{\prime} C+A^{\prime} B C$ [see Tables 1.1: $\left.1+x=1\right]$
$=A B+A^{\prime} C+A^{\prime} C B$ [Commutative law]
$=A B+A^{\prime} C(1+B)$ [Distributive law]
$=A B+A^{\prime} C[$ see Tables 1.1: $1+x=1]$
Q.1.3.1.8 Simplify the Boolean expression represented by truth Table 1.2.

Answer: From the truth table, we get
$f(x, y, z)=x^{\prime} y^{\prime} z^{\prime}+x^{\prime} y z^{\prime}+x y^{\prime} z+x y z^{\prime}+x y z$.
A minterm is added, if f gets 1 for the minterm.
We make algebraic simplification of f as given below.
$f(x, y, z)=x^{\prime} y^{\prime} z^{\prime}+x^{\prime} y z^{\prime}+x y^{\prime} z+x y z^{\prime}+x y z$
$=x^{\prime} z^{\prime}\left(y^{\prime}+y\right)+x y^{\prime} z+x y\left(z^{\prime}+z\right)$ [Distributive law]
$=x^{\prime} z^{\prime}+x y^{\prime} z+x y$
$=x^{\prime} z^{\prime}+x\left(y^{\prime} z+y\right)$ [Distributive law]

2. Order Relations and Lattices

Q.1.3.2.1 What is poset? Give examples.

Answer: Let R be a relation on set $S . R$ is called a partially ordered set (poset) if R is reflexive, antisymmetric, and transitive. Examples of a few posets are given below:
(i) Let N be the set of natural numbers. Consider the relation \leq on N. $a \leq a$, for $a \in N$. Thus, \leq is reflexive.
If $a \leq b$ and $b \leq a$ then $a=b$. Thus, \leq is antisymmetric.
Also, $a \leq b$ and $b \leq c$ imply that $a \leq c$. So, \leq is transitive.
Thus, (N, \leq) is a poset.
(ii) Another example of poset is a collection of people ordered by genealogical descendancy. Some pairs of people bear the descendant-ancestor relationship, but other pairs of people are incomparable, with neither being a descendant of the other.
(iii) A trivial example of a poset is $(S,=)$, where S is any set. Any set can be partially ordered by equality.
Q.1.3.2.2 Let '|' be the divisibility operation on $R-\{0\}$. Show that ' \mid ' is not a poset.
Answer: Relation ' \mid ' is not antisymmetric, since $2 \mid-2$ and $-2 \mid 2$, but $2 \neq-2$.
Q.1.3.2.3 Define the following terms: total ordering, strict ordering, incomparability, chain.
Answer: Let (X, \leq) be a partial ordered set.
(i) It is total ordered if and only if either $a \leq b$, or $b \leq a, \forall a, b \in X$.

Total ordering is also called linear ordering.
(ii) It is strictly ordered $(<)$ if and only if $a \leq b$ and $a \neq b, a, b \in X$.
(iii) For $a, b \in X, a$ and b are incomparable, when neither $a \leq b$, nor $b \leq a$.
(iv) $C \subseteq X$ is a chain if and only if \leq induces a total ordering on C.
Q.1.3.2.4 Identify the relations on $X=\{1,2,3,4\}$, that are not partially otdered.
$R_{1}=\{(1,1),(1,2),(3,3),(4,4),(1,3),(3,4),(1,4),(2,2)\}$
$R_{2}=\{(1,1),(2,2),(3,1),(1,3),(1,2)\}$
$R_{3}=\{(1,1),(2,2),(3,3),(4,4),(1,3),(2,4)\}$

Answer: The binary relations R_{1} and R_{3} are partial orders. But, R_{2} is not a partial order.
$4 \in X$. But $(4,4) \notin R_{2}$. So, R_{2} is not reflexive.
$(3,1),(1,3) \in R_{2}$. But, $1 \neq 3$. Then R_{2} is not antisymmetric.
$(3,1),(1,3) \in R_{2}$. But, $(3,3) \notin R_{2}$. Then R_{2} is not transitive.
In fact, none of the conditions is satisfied by R_{2}.
Q.1.3.2.5 What is cover? Give an example.

Answer: Let X be a set with a partial order \leq. Let $<$ be the relation on X such that $x<y$ if and only if $x \leq y$ and $x \neq y$.
Let x and y be elements of X. Then y covers x, written as $x \lessdot y$, if $x<y$ and there is no element z such that $x<z<y$. Equivalently, y covers x if the interval $[x, y]$ is the two-element set $\{x, y\}$.
Let $N=\{1,2,3, \ldots\}$ be ordered by divisibility (|). Then 15 is covered by 105 . But, 14 is not covered by 84 , since $14|42| 84$.
Q.1.3.2.6 Consider the set $S=\{1,3,5,7,9\}$. Find all comparable and non-comparable pairs of elements when S is ordered by divisibility.
Answer: Comparable pairs on S are $(1,3),(1,5),(1,7),(1,9),(3,9)$.
Non-comparable pairs are $(3,5),(3,7),(5,7),(5,9),(7,9)$.
Note that elements x and y are non-comparable if neither $x \mid y$ nor $y \mid x$.
Q.1.3.2.7 Let $X=(1,2,3, \ldots)$ be ordered by divisibility. Check whether the subset $(2,4,8,12)$ is linearly ordered.
Answer: A set S is said to linearly ordered if every pair of elements is comparable. A linearly ordered set is also called totally ordered. Here the pair $(8,12)$ is not comparable, since neither 8 divides 12 nor 12 divides 8 . Thus, the given set X is not linearly ordered.
Q.1.3.2.8 Let N be the set of natural number ordered by \leq. Thus, $(a, b) \leq\left(a^{\prime}, b^{\prime}\right)$ if $a \leq a^{\prime}$ and $b \leq b^{\prime}$. Let us define an order $<$ on $N \times N$ such that $(a, b)<\left(a^{\prime}, b^{\prime}\right)$, if ($a \leq a^{\prime}$ and $\left.b<b^{\prime}\right)$, or ($a<a^{\prime}$ and $b \leq b^{\prime}$).
Order the pairs (i) $(1,4)$ and $(1,3)$, (ii) $(1,4)$ and $(1,5)$.
Answer: (i) $(1,4)>(1,3)$, since $(1 \geq 1)$ and $(4>3)$
(ii) $(1,4)<(1,5)$, since $(1 \leq 1)$ and $(4<5)$
Q.1.3.2.9 What is anti-chain? Give examples.

Answer: Let (X, \leq) be a partial ordered set. $D \subseteq X$ is an anti-chain if every pair of elements in D are incomparable.
The following sets are antichains based on of subset relationship:
(i) $\{\{1\},\{2\},\{3\}\}$
(ii) $\{\{1,2\},\{2,3\},\{1,3\}\}$
Q.1.3.2.10 What is product partial order?

Answer: A partial order \leq defined on the cartesian product $S \times T$ is known as product partial order, where (S, \leq) and (T, \leq) are posets.
Q.1.3.2.11 Explain the concept of Hasse diagram with help of an example.
Answer: A Hasse diagram is a graphical representation of a partially ordered set. The graph is displayed using the cover relation of the partially ordered set with an implied upward orientation. A point is drawn for each element of the poset, and line segments are drawn between these points according to the following rules:
(i) If $x<y$ in the poset, then the point corresponding to x appears lower in the drawing than the point corresponding to y.
(ii) A line segment between the points corresponding to any two elements x and y of the poset is included in the drawing if and only if x covers y, or y covers x.
Consider the set $X=\{1,2,3\}$. Let the power set of X be $\rho(X)$. Then $(\rho(X), \subseteq)$ is a poset as depicted using Hasse diagram in Fig. 2.1.

Figure 2.1: Hasse diagram of $(\rho(X), \subseteq)$
Here, $\rho(X)=\{\phi,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}$.
Q.1.3.2.12 Draw Hasse diagram of poset containing factors of 60, partially ordered by divisibility.

3. Fibonacci Numbers

Q.1.3.3.1 Define Fibonacci series. Find 10 -th Fibonacci number.

Answer: The Fibonacci series has been defined by the following recurrence relation: $F_{n+1}=F_{n}+F_{n-1}$ with base conditions: $F_{1}=1, F_{2}=1$. Based on the above recurrence relation and base conditions, we compute the following numbers.
$F_{3}=F_{2}+F_{1}=1+1=2$
$F_{4}=F_{3}+F_{2}=2+1=3$
$F_{5}=F_{4}+F_{3}=3+2=5$
$F_{6}=F_{5}+F_{4}=5+3=8$
$F_{7}=F_{6}+F_{5}=8+5=13$
$F_{8}=F_{7}+F_{6}=13+8=21$
$F_{9}=F_{8}+F_{7}=21+12=34$
$F_{10}=F_{9}+F_{8}=34+21=55$
Q.1.3.3.2 The Fibonacci numbers can be extended to zero and negative indices using the relation $F_{n}=F_{n+2}-F_{n+1}$. Calculate Fibonacci numbers from F_{0} to F_{-5}. Find a general formula for F_{-n} in terms of F_{n}. Prove your result.
Answer: Fibonacci numbers from F_{0} to F_{-5} are given below:
$F_{0}=F_{2}-F_{1}=0$
$F_{-1}=F_{1}-F_{0}=1-0=1$
$F_{-2}=F_{0}-F_{1}=0-1=-1$
$F_{-3}=F_{-1}-F_{-2}=1-(-1)=2$
$F_{-4}=F_{-2}-F_{-3}=-1-2=-3$
$F_{-5}=F_{-3}-F_{-4}=2-(-3)=5$
It can be shown that $F_{-n}=(-1)^{n+1} F_{n}$. We shall prove the formula using mathematical induction on n.
Based on the above calculations, $F_{-1}=1=(-1)^{1+1} F_{1}$.
$F_{-2}=-1=(-1)^{2+1} F_{2}$ [Q.1.3.3.1]
So, the formula holds true for $n=1$ and $n=2$.
We assume that the formula is true for $n \leq k$. We shall prove that the formula is true for $n=k+1$.
Now, $F_{-(k+1)}=F_{-(k+1)+2}-F_{-(k+1)+1}$ [From definition]
$=F_{-(k-1)}-F_{-k}=(-1)^{k} F_{k-1}-(-1)^{k+1} F_{k}$ [Induction hypothesis]
$=(-1)^{k+2}\left(F_{k-1}+F_{k}\right)$
$=(-1)^{(k+1)+1} F_{k+1}$ [From recurrence relation]
Q.1.3.3.3 Obtain the generating function of Fibonacci numbers.

Answer: The generating function is given by $f(x)=\sum_{n=1}^{\infty} F_{n} x^{n}$.
Then $f(x)=F_{1} x+F_{2} x^{2}+F_{3} x^{3}+F_{4} x^{4}+\ldots$
$x f(x)=F_{1} x^{2}+F_{2} x^{3}+F_{3} x^{4}+F_{4} x^{5}+\ldots$
$x^{2} f(x)=F_{1} x^{3}+F_{2} x^{4}+F_{3} x^{5}+F_{4} x^{6}+\ldots$
Now, $\left(1-x-x^{2}\right) f(x)=f(x)-x f(x)-x^{2} f(x)$
We apply the facts that $F_{1}=F_{2}=1$ and $F_{n+1}-F_{n}-F_{n-1}=0$.
Then $f(x)-x f(x)-x^{2} f(x)=x$. Thus, $\left(1-x-x^{2}\right) f(x)=x$
or, $f(x)=\frac{x}{1-x-x^{2}}$.
Q.1.3.3.4 State some properties of Fibonacci numbers.

Answer: Some interesting properties of Fibonacci numbers are given below:
Property 1: $F_{1}+F_{2}+F_{3}+\cdots+F_{n}=F_{n+2}-1$
Proof: $F_{1}=F_{3}-F_{2}$
$F_{2}=F_{4}-F_{3}$
$F_{3}=F_{5}-F_{4}$
$F_{n-1}=F_{n+1}-F_{n}$
$F_{n}=F_{n+2}-F_{n+1}$
By adding, $\quad \sum_{i=1}^{n} F_{i}=F_{n+2}-F_{2}=F_{n+2}-1$, since $F_{2}=1$.
Property 2: $F_{1}+F_{3}+F_{5}+\cdots+F_{2 n-1}=F_{2 n}$
Proof: $F_{1}=F_{2}$
$F_{3}=F_{4}-F_{2}$
$F_{5}=F_{6}-F_{4}$
$F_{2 n-1}=F_{2 n}-F_{2 n-2}$
By adding, we gat $\sum_{i=1}^{n} F_{2 i-1}=F_{2 n}$
Property 3: $F_{2}+F_{4}+\cdots+F_{2 n}=F_{2 n+1}-1$
Proof: From(3.1), $\sum_{i=1}^{2 n} F_{i}=F_{2 n+2}-1$
$(3.4)-(3.2) \Rightarrow$
$\sum_{i=1}^{n} F_{2 i}=F_{2 n+2}-1-F_{2 n}$
$=F_{2 n+2}-F_{2 n}-1$
$=F_{2 n+1}-1$

Corollary: $F_{1}-F_{2}+F_{3}-F_{4}+\cdots+F_{2 n-1}-F_{2 n}$
$=-F_{2 n-1}+1$

Proof: It follows from (3.2) and (3.3).
Corollary: $F_{1}-F_{2}+F_{3}-F_{4}+\cdots-F_{2 n}+F_{2 n+1}=F_{2 n}+1$
Proof: By adding $F_{2 n+1}$ to both sides of (3.5), the result follows.
Corollary: $F_{1}-F_{2}+F_{3}-F_{4}+\ldots(-1)^{n+1} F_{n}$
$=(-1)^{n+1} F_{n-1}+1$
Proof: Combining (3.5) and (3.6), the result follows.
Property 4: $F_{1}^{2}+F_{2}^{2}+F_{3}^{2}+\cdots+F_{n}^{2}=F_{n} F_{n+1}$
Proof: We note that $F_{k} F_{k+1}-F_{k-1} F_{k}=F_{k}\left(F_{k+1}-F_{k-1}\right)=F_{k}^{2}$
$F_{1}^{2}=F_{1} F_{2}\left(\right.$ as $\left.F_{1}=F_{2}=1\right)$
$F_{2}^{2}=F_{2} F_{3}-F_{1} F_{2}$
$F_{3}^{2}=F_{3} F_{4}-F_{2} F_{3}$
$F_{n}^{2}=F_{n} F_{n+1}-F_{n-1} F_{n}$
By adding, we get $\sum_{i=1}^{n} F_{i}^{2}=F_{n} F_{n+1}$
Q.1.3.3.5 Solve the following recurrence relation.
$u_{n}=u_{n-1}+u_{n-2}$
where, $u_{1}=u_{2}=1$
Answer: Using (3.9), $\sum_{n=3}^{\infty} u_{n} x^{h}=\sum_{n=3}^{\infty} u_{n-1} x^{n}+\sum_{n=3}^{\infty} u_{n-2} x^{n}$
Let $G(x)=u_{1}+u_{2} x+u_{3} x^{2}+\cdots+u_{n-1} x^{n-2}+u_{n} x^{n-1}+\ldots$
Therefore, $x \sum_{n=3}^{\infty} u_{n} x^{n-1}=x^{2} \sum_{n=3}^{\infty} a_{n-1} x^{n-2}+x^{3} \sum_{n=3}^{\infty} a_{n-2} x^{n-3}$
or, $G(x)-u_{1}-u_{2} x=x\left[G(x)-u_{1}\right]+x^{2} G(x)$, for $x \neq 0$
or, $G(x)\left[1-x-x^{2}\right]=u_{1}+u_{2} x-u_{1} x=u_{1}=1$ as $u_{2}=u_{2}=1$
or, $G(x)=\left(1-x-x^{2}\right)^{-1}=\frac{1}{1-x-x^{2}}$
or, $G(x)=\frac{1}{(x-\alpha)(x-\beta)}$, where α, β are the roots of equation $1-x-x^{2}=0$
or $x^{2}+x-1=0$
i.e. $\alpha=\frac{-1+\sqrt{5}}{2}, \beta=\frac{-1-\sqrt{5}}{2}$
or, $G(x)=-\frac{1}{\alpha-\beta}\left[\frac{1}{x-\alpha}-\frac{1}{x-\beta}\right]$
or, $G(x)=-\frac{1}{\sqrt{5}}\left[\frac{1}{x-\alpha}-\frac{1}{x-\beta}\right]$
or, $G(x)=+\frac{1}{\sqrt{5}}\left[\frac{1}{\alpha}\left(1-\frac{x}{\alpha}\right)^{-1}-\frac{1}{\beta}\left(1-\frac{x}{\beta}\right)^{-1}\right]$
(3.10)is an identity.

Then, $u_{n}=$ co-efficient of x^{n-1} in the right side of (3.10)
$u_{n}=\frac{1}{\sqrt{5}}\left[\frac{1}{\alpha} \cdot \frac{1}{\alpha^{n-1}}-\frac{1}{\beta} \cdot \frac{1}{\beta^{n-1}}\right]=\frac{1}{\sqrt{5}}\left[\frac{1}{\alpha^{n}}-\frac{1}{\beta^{n}}\right]$
So, $u_{n}=\frac{1}{\sqrt{5}}\left[\frac{\beta^{n}-\alpha^{n}}{(\alpha \beta)^{n}}\right]=\frac{\alpha^{n}-\beta^{n}}{\sqrt{5}}$,
where $\alpha \beta=\frac{1}{4}\left((-1)^{2}-(\sqrt{5})^{2}\right)=-1$
Thus, $u_{n}=\frac{\alpha^{n}-\beta^{n}}{\sqrt{5}}=\frac{\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}}{\sqrt{5}}$
Formula (3.11) is called Binet's formula in honour of the mathematician

